共查询到20条相似文献,搜索用时 15 毫秒
1.
本文综述了锂离子电池正、负极嵌锂材料/电解质界面膜形成功能分子的研究现状。在总结负极界面膜形成机理的基础上,根据成膜功能分子形成SEI膜的不同机理,从饰膜机制和成膜机制两个方面对现有成膜功能分子的作用效果进行了综述与评价,提出了现有SEI膜形成功能分子的不足及所面临的问题。此外,简单阐述了正极界面膜的形成机制以及正极界面膜形成功能分子的研究进展。文章最后简单综述了理论计算方法在锂离子电池界面膜研究中的应用,并对其在设计新型成膜功能分子的应用前景进行了展望。 相似文献
2.
Dr. Nian‐Wu Li Yang Shi Dr. Ya‐Xia Yin Dr. Xian‐Xiang Zeng Jin‐Yi Li Prof. Cong‐Ju Li Prof. Li‐Jun Wan Prof. Rui Wen Prof. Yu‐Guo Guo 《Angewandte Chemie (International ed. in English)》2018,57(6):1505-1509
Lithium (Li) metal is a promising anode material for high‐energy density batteries. However, the unstable and static solid electrolyte interphase (SEI) can be destroyed by the dynamic Li plating/stripping behavior on the Li anode surface, leading to side reactions and Li dendrites growth. Herein, we design a smart Li polyacrylic acid (LiPAA) SEI layer high elasticity to address the dynamic Li plating/stripping processes by self‐adapting interface regulation, which is demonstrated by in situ AFM. With the high binding ability and excellent stability of the LiPAA polymer, the smart SEI can significantly reduce the side reactions and improve battery safety markedly. Stable cycling of 700 h is achieved in the LiPAA‐Li/LiPAA‐Li symmetrical cell. The innovative strategy of self‐adapting SEI design is broadly applicable, providing opportunities for use in Li metal anodes 相似文献
3.
4.
5.
Xue‐Qiang Zhang Tao Li Bo‐Quan Li Rui Zhang Peng Shi Chong Yan Jia‐Qi Huang Qiang Zhang 《Angewandte Chemie (International ed. in English)》2020,59(8):3252-3257
High‐energy‐density Li metal batteries suffer from a short lifespan under practical conditions, such as limited lithium, high loading cathode, and lean electrolytes, owing to the absence of appropriate solid electrolyte interphase (SEI). Herein, a sustainable SEI was designed rationally by combining fluorinated co‐solvents with sustained‐release additives for practical challenges. The intrinsic uniformity of SEI and the constant supplements of building blocks of SEI jointly afford to sustainable SEI. Specific spatial distributions and abundant heterogeneous grain boundaries of LiF, LiNxOy, and Li2O effectively regulate uniformity of Li deposition. In a Li metal battery with an ultrathin Li anode (33 μm), a high‐loading LiNi0.5Co0.2Mn0.3O2 cathode (4.4 mAh cm?2), and lean electrolytes (6.1 g Ah?1), 83 % of initial capacity retains after 150 cycles. A pouch cell (3.5 Ah) demonstrated a specific energy of 340 Wh kg?1 for 60 cycles with lean electrolytes (2.3 g Ah?1). 相似文献
6.
Chi‐Cheung Su Meinan He Jiayan Shi Rachid Amine Jian Zhang Khalil Amine 《Angewandte Chemie (International ed. in English)》2020,59(41):18229-18233
Despite the exceptionally high energy density of lithium metal anodes, the practical application of lithium‐metal batteries (LMBs) is still impeded by the instability of the interphase between the lithium metal and the electrolyte. To formulate a functional electrolyte system that can stabilize the lithium‐metal anode, the solvation behavior of the solvent molecules must be understood because the electrochemical properties of a solvent can be heavily influenced by its solvation status. We unambiguously demonstrated the solvation rule for the solid‐electrolyte interphase (SEI) enabler in an electrolyte system. In this study, fluoroethylene carbonate was used as the SEI enabler due to its ability to form a robust SEI on the lithium metal surface, allowing relatively stable LMB cycling. The results revealed that the solvation number of fluoroethylene carbonate must be ≥1 to ensure the formation of a stable SEI in which the sacrificial reduction of the SEI enabler subsequently leads to the stable cycling of LMBs. 相似文献
7.
Spatiotemporal Changes of the Solid Electrolyte Interphase in Lithium‐Ion Batteries Detected by Scanning Electrochemical Microscopy 下载免费PDF全文
M. Sc. Heinz Bülter M. Sc. Fabian Peters Dr. Julian Schwenzel Prof. Dr. Gunther Wittstock 《Angewandte Chemie (International ed. in English)》2014,53(39):10531-10535
The solid electrolyte interphase (SEI) in lithium‐ion batteries separates the highly reductive lithiated graphite from reducible electrolyte components. It is critical for the performance, durability, and safe operation of batteries. In situ imaging of the SEI is demonstrated using the feedback mode of scanning electrochemical microscopy (SECM) with 2,5‐di‐tert‐butyl‐1,4‐dimethoxy benzene as mediator. The formation of the SEI is indicated by a decrease of the mediator regeneration rate. Prolonged imaging of the same region revealed fluctuation of the passivating properties on time scales between 2 min and 20 h with an inhomogeneous distribution over the sample. The implications of the approach for in situ assessment of local SEI properties on graphite electrodes are discussed with respect to studying the influence of mechanical stress on SEI reliability and the mode of action of electrolyte additives aiming at improving SEI properties. 相似文献
8.
Inside Cover: A Flexible Solid Electrolyte Interphase Layer for Long‐Life Lithium Metal Anodes (Angew. Chem. Int. Ed. 6/2018) 下载免费PDF全文
Dr. Nian‐Wu Li Yang Shi Dr. Ya‐Xia Yin Dr. Xian‐Xiang Zeng Jin‐Yi Li Prof. Cong‐Ju Li Prof. Li‐Jun Wan Prof. Rui Wen Prof. Yu‐Guo Guo 《Angewandte Chemie (International ed. in English)》2018,57(6):1422-1422
9.
开发高电压正极材料是发展高能量密度锂离子电池的重要途径之一。常规电解液在高电压下容易与正极材料表面发生副反应,影响高电压正极材料性能的发挥,因此,高电压电解液引起了人们广泛的关注。本文主要从新型溶剂体系和常规碳酸酯溶剂体系两方面对锂离子电池高电压电解液进行综述与评价,提出了现有电解液的不足及面临的问题。从电解液溶剂分子设计理论入手,分析了砜类溶剂、腈基溶剂和离子液体等新型溶剂作为高压电解液溶剂的优缺点,同时探讨了不同种类添加剂在常规碳酸酯溶剂体系中的作用机理。此外,本文还介绍了理论计算方法在锂离子电池高电压电解液研究中的应用,并对其在设计新型高电压电解液中的应用前景进行了展望。 相似文献
10.
近几年,电动汽车市场的飞速发展对锂离子电池的能量密度和安全性提出了更高的要求. 然而,过去近30年,在应用终端市场的大力推动下,锂离子电池的电极材料、电池结构设计和生产工艺都已经发展得比较成熟,容量提升空间已经比较小,想要进一步提高现有锂离子电池的能量密度,需要对锂离子电池的整个系统和工作原理有更深刻和全面的理解. 存在于锂离子电池电极材料和电解液之间的固态电解质中间相(solid electrolyte interphase,SEI)已被证明是一个影响电池性能的重要因素,目前学术界和产业界对其认识还不是很全面,尤其是高分辨、工况下以及多技术联合的界面表征工作较少见到报道. 原子力显微镜(atomic force microscopy,AFM)通过探测针尖与样品之间的相互作用力,能够在原子尺度上原位表征液态电池界面的形貌以及力学特性,对于电极界面的理解和调控非常重要. 本文作者通过总结近几年AFM在锂离子电池SEI研究的中的应用,并结合本课题组在该领域的工作,对AFM技术在锂离子电池SEI研究中的应用做了总结和展望,对加深锂离子电池界面的理解,以及构建稳定锂电池界面的相关研究有参考意义. 相似文献
11.
电解液添加剂能有效缓解锌金属阳极的不可控枝晶生长和固有副反应,大幅提升锌金属阳极的循环稳定性和可逆性,对水系锌离子电池的发展和商业化应用具有重要意义。本文通过对近期水系锌离子电池电解液添加剂的研究进展进行了系统总结和分析,简要介绍了锌金属阳极目前面临的主要挑战及其相关机理,重点阐述了电解液添加剂对锌金属阳极界面的作用机制,包括改变溶剂化结构、调节沉积方式、构筑界面保护层。此外,还对不同类型电解液添加剂进行了分类讨论,包括离子添加剂、无机添加剂和有机添加剂。最后,我们进一步对电解液添加剂策略在提升水系锌离子电池电化学性能中存在的科学问题和未来的研究方向进行了总结与展望。 相似文献
12.
13.
基于1 mol ·dm-3 LiPF6/EC的传统非水型电解液已在锂离子电池中应用了20年。高功率、高比能锂离子电池以及锂金属电池(如Li-O2和Li-S)的发展,对电解液提出了更高的要求,使得电解液的研究与开发到了一个革新换代的阶段。研究者们已经在离子液体、聚合物电解质和无机固态电解质等新型体系研究方面取得一定的研究成果,但是这些新体系存在的本征问题使其商业化应用面临一定的困难。研究者们也开始重新审视已优化的常规液态电解液体系,高浓度锂盐电解液(>3 mol ·dm-3)再次引起广泛关注。本文综述了高浓度锂盐电解液的发展历程、溶液结构特征、分类标准及其特殊的物理化学性能、锂离子传输性质和电解液/电极相容性;对高浓度锂盐电解液存在的主要问题进行了简要分析,提出了相应的改进措施,展望了高浓度锂盐电解液未来的发展方向,为新型电解液的开发提供了一条新思路。 相似文献
14.
Xiaofeng He Xiao Liu Qing Han Peng Zhang Xiaosheng Song Yong Zhao 《Angewandte Chemie (International ed. in English)》2020,59(16):6397-6405
A proof‐of‐concept study on a liquid/liquid (L/L) two‐phase electrolyte interface is reported by using the polarity difference of solvent for the protection of Li‐metal anode with long‐term operation over 2000 h. The L/L electrolyte interface constructed by non‐polar fluorosilicane (PFTOS) and conventionally polar dimethyl sulfoxide solvents can block direct contact between conventional electrolyte and Li anode, and consequently their side reactions can be significantly eliminated. Moreover, the homogeneous Li‐ion flow and Li‐mass deposition can be realized by the formation of a thin and uniform solid‐electrolyte interphase (SEI) composed of LiF, LixC, LixSiOy between PFTOS and Li anode, as well as the super‐wettability state of PFTOS to Li anode, resulting in the suppression of Li dendrite formation. The cycling stability in a lithium–oxygen battery as a model is improved 4 times with the L/L electrolyte interface. 相似文献
15.
锂离子电池电解液成膜添加剂乙烯基亚硫酸乙烯酯的电化学行为 总被引:1,自引:0,他引:1
研究了具有不饱和双键和亚硫酸酯双官能团的乙烯基亚硫酸乙烯酯(VES)作为锂离子电池电解液成膜添加剂对中间相碳微球(CMS)和LiFePO4电极电化学性能的影响. 结果表明: 在1 mol/L LiClO4/PC电解液体系中, 少量的VES (5%)能够在电化学过程中先于PC在CMS表面还原, 形成稳定的SEI膜, 明显抑制PC和溶剂化锂离子共嵌入石墨层间, 改善了电池的循环性能. 此外, 电解液1 mol/L LiClO4/PC+5%VES (V∶V)在LiFePO4电极中展现出良好的电化学稳定性. 相似文献
16.
Dong‐Joo Yoo Sungyun Yang Ki Jae Kim Jang Wook Choi 《Angewandte Chemie (International ed. in English)》2020,59(35):14869-14876
In lithium metal batteries, electrolytes containing a high concentration of salts have demonstrated promising cyclability, but their practicality with respect to the cost of materials is yet to be proved. Here we report a fluorinated aromatic compound, namely 1,2‐difluorobenzene, for use as a diluent solvent in the electrolyte to realize the “high‐concentration effect”. The low energy level of the lowest unoccupied molecular orbital (LUMO), weak binding affinity for lithium ions, and high fluorine‐donating power of 1,2‐difluorobenzene jointly give rise to the high‐concentration effect at a bulk salt concentration near 2 m , while modifying the composition of the solid‐electrolyte‐interphase (SEI) layer to be rich in lithium fluoride (LiF). The employment of triple salts to prevent corrosion of the aluminum current collector further improves cycling performance. This study offers a design principle for achieving a local high‐concentration effect with reasonably low bulk concentrations of salts. 相似文献
17.
Martin Winter Wolfgang K. Appel Bernd Evers Tomásě Hodal Kai-Christian Möller Ingo Schneider Mario Wachtler Markus R. Wagner Gerhard H. Wrodnigg Jürgen O. Besenhard 《Monatshefte für Chemie / Chemical Monthly》2001,132(4):473-486
Summary. Rechargeable lithium ion cells operate at voltages of 3.5–4.5 V, which is far beyond the thermodynamic stability window of
the battery electrolyte. Strong electrolyte reduction and anode corrosion has to be anticipated, leading to irreversible loss
of electroactive material and electrolyte and thus strongly deteriorating cell performance. To minimize these reactions, anode
and electrolyte components have to be combined that induce the electrolyte reduction products to form an effectively protecting
film at the anode/electrolyte interface, which hinders further electrolyte decomposition reactions, but acts as membrane for
the lithium cations, i.e. behaving as a solid electrolyte interphase (SEI). This paper focuses on important aspects of the SEI. By using key examples,
the effects of film forming electrolyte additives and the change of the active anode material from carbons to lithium storage
alloys are highlighted.
Received May 30, 2000. Accepted June 14, 2000 相似文献
18.
Ethan P. Kamphaus Stefany Angarita Gomez Dr. Xueping Qin Prof. Dr. Minhua Shao Prof. Dr. Perla B. Balbuena 《Chemphyschem》2020,21(12):1310-1317
The use of a lithium metal anode still presents a challenging chemistry and engineering problem that holds back next generation lithium battery technology. One of the issues facing lithium metal is the presence of the solid electrolyte interphase (SEI) layer that forms on the electrode creating a variety of chemical species that change the properties of the electrode and is closely related to the formation and growth of lithium dendrites. In order to advance the scientific progress of lithium metal more must be understood about the fundamentals of the SEI. One property of the SEI that is particularly critical is the passivating behavior of the different SEI components. This property is critical to the continued formation of SEI and stability of the electrolyte and electrode. Here we report the investigation of the passivation behavior of Li2O, Li2CO3, LiF and LiOH with the lithium salt LiFSI. We used large computational chemistry models that are able to capture the lithium/SEI interface as well as the SEI/electrolyte interface. We determined that LiF and Li2CO3 are the most passivating of the SEI layers, followed by LiOH and Li2O. These results match previous studies of other Li salts and provide further examination of LiFSI reduction. 相似文献
19.
Jia‐Yan Liang Xu‐Dong Zhang Xian‐Xiang Zeng Min Yan Ya‐Xia Yin Sen Xin Wen‐Peng Wang Xiong‐Wei Wu Ji‐Lei Shi Li‐Jun Wan Yu‐Guo Guo 《Angewandte Chemie (International ed. in English)》2020,59(16):6585-6589
A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high‐energy‐density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cathode electrolyte interphase (CEI) between Ni‐rich cathodes and hybrid electrolyte. The CEI preserves the surface structure with high compatibility, leading to enhanced interfacial stability. Meanwhile, the space‐charge layer can be prominently mitigated at the solid/solid interface via harmonized chemical potentials, acquiring promoted interfacial dynamics as revealed by COMSOL simulation. Consequently, the amorphous CEI integrates the bifunctionality to provide an excellent cycling stability, high Coulombic efficiency, and favorable rate capability in high‐voltage Li‐metal batteries, innovating the design philosophy of functional CEI strategy for future high‐energy‐density batteries. 相似文献
20.
新型成膜电解液添加剂亚硫酸丁烯酯的电化学行为 总被引:2,自引:0,他引:2
合成制备了一种新的环状亚硫酸酯类有机溶剂——亚硫酸丁烯酯(BS). 量子化学计算结果表明, 亚硫酸丁烯酯有机溶剂分子的总能、LUMO值比碳酸丙烯酯有机溶剂的低, 具有较强的得电子能力, 不易被氧化. 其作为添加剂与碳酸丙烯酯(PC)混合应用于锂离子电池中, 可有效地抑制PC在石墨电极中的共插入, 能显著改善循环性能. 相似文献