首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Molecularly imprinted polymers for the determination of triazines were synthesized by precipitation using atrazine as template, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as crosslinker, and 2,2′‐azobisisobutrynitrile as initiator. The polymers were characterized by infrared spectroscopy and scanning electron microscopy and packed in a device for microextraction by packed sorbent aiming for the preconcentration/cleanup of herbicides, such as atrazine, simazine, simetryn, ametryn, and terbutryn in corn samples. Liquid chromatography coupled with time‐of‐flight mass spectrometry was used for the separation and determination of the herbicides. The selectivity coefficient of molecularly imprinted polymers was compared with that of nonimprinted polymer for the binary mixtures of atrazine/propanil and atrazine/picloram, and the values obtained were 15.6 and 2.96, respectively. The analytical curve ranged from 10 to 80 μg/kg (r = 0.989) and the limits of detection and quantification in the corn matrices were 3.3 and 10 μg/kg, respectively. Intra‐ and interday precisions were < 14.8% and accuracy was better than 90.9% for all herbicides. Polymer synthesis was successfully applied to the cleanup and preconcentration of triazines from fortified corn samples with 91.1–109.1% of recovery.  相似文献   

2.
Uniformly-sized, molecularly imprinted polymers (MIPs) for atrazine, ametryn and irgarol were prepared by a multi-step swelling and polymerization method using ethylene glycol dimethacrylate as a cross-linker and methacrylic acid (MAA), 2-(trifluoromethyl) acrylic acid (TFMAA) or 4-vinylpyridine either as a functional monomer or not. The MIP for atrazine prepared using MAA showed good molecular recognition abilities for chlorotriazine herbicides, while the MIPs for ametryn and irgarol prepared using TFMAA showed excellent molecular recognition abilities for methylthiotriazine herbicides. A restricted access media-molecularly imprinted polymer (RAM-MIP) for irgarol was prepared followed by in situ hydrophilic surface modification using glycerol dimethacrylate and glycerol monomethacrylate as hydrophilic monomers. The RAM-MIP was applied to selective pretreatment and enrichment of methylthiotriazine herbicides, simetryn, ametryn and prometryn, in river water, followed by their separation and UV detection via column-switching HPLC. The calibration graphs of these compounds showed good linearity in the range of 50-500 pg/mL (r > 0.999) with a 100 mL loading of a river water sample. The quantitation limits of simetryn, ametryn and prometryn were 50 pg/mL, and the detection limits were 25 pg/mL. The recoveries of simetryn, ametryn and prometryn at 50 pg/mL were 101%, 95.6% and 95.1%, respectively. This method was successfully applied for the simultaneous determination of simetryn, ametryn and prometryn in river water.  相似文献   

3.
In this study, new molecularly imprinted polymer (MIP) nanoparticles are designed for selective recognition of different drugs used for the treatment of type 2 diabetes mellitus, i.e. sitagliptin (SG) and metformin (MF). The SG‐ and MF‐imprinted polymer nanoparticles are synthesized by free‐radical initiated polymerization of the functional monomers: methacrylic acid and methyl methacrylate; and the crosslinker: ethylene glycol dimethacrylate. The surface morphology of resultant MIP nanoparticles is studied by atomic force microscopy. Fourier transform infrared spectra of MIP nanoparticles suggest the presence of reversible, non‐covalent interactions between the template and the polymer. The effect of pH on the rebinding of antidiabetic drugs with SG‐ and MF‐imprinted polymers is investigated to determine the optimal experimental conditions. The molecular recognition characteristics of SG‐ and MF‐imprinted polymers for the respective drug targets are determined at low concentrations of SG (50–150 ppm) and MF (5–100 ppm). In both cases, the MIP nanoparticles exhibit higher binding response compared to non‐imprinted polymers. Furthermore, the MIPs demonstrate high selectivity with four fold higher responses toward imprinted drugs targets, respectively. Recycled MIP nanoparticles retain 90% of their drug‐binding efficiency, which makes them suitable for successive analyses with significantly preserved recognition features.  相似文献   

4.
This paper reports the preparation of metsulfuron-methyl (MSM) imprinted polymer layer-coated silica nanoparticles toward analysis of trace sulfonylurea herbicides in complicated matrices. To induce the selective occurrence of surface polymerization, the polymerizable double bonds were first grafted at the surface of silica nanoparticles by the silylation. Afterwards, the MSM templates were imprinted into the polymer-coating layer through the interaction with functional monomers. The programmed heating led to the formation of uniform MSM-imprinted polymer layer with controllable thickness, and further improved the reproducibility of rebinding capacity. After removal of templates, recognition sites of MSM were exposed in the polymer layers. As a result, the maximum rebinding capacity was achieved with the use of optimal grafting ratio. There was also evidence indicating that the MSM-imprinted polymer nanoparticles compared with nonimprinted polymer nanoparticles had a higher selectivity and affinity to four structure-like sulfonylurea herbicides. Moreover, using the imprinted particles as dispersive solid-phase extraction (DSPE) materials, the recoveries of four sulfonylurea herbicides determined by high-performance liquid chromatography (HPLC) were 80.2-99.5%, 83.8-102.4%, 77.8-93.3%, and 73.8-110.8% in the spiked soil, rice, soybean, and corn samples, respectively. These results show the possibility that the highly selective separation and enrichment of trace sulfonylurea herbicides from soil and crop samples can be achieved by the molecular imprinting modification at the surface of silica nanoparticles.  相似文献   

5.
In this work, we report the first application of ion‐imprinted technology via precipitation polymerization for simple and practical determination of rubidium ions. The rubidium‐ion‐imprinted polymer nanoparticles were prepared using dibenzo‐21‐crown‐7 as a selective ligand, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross linker, and 2,2′‐azobisisobutyronitrile as radical initiator. The resulting powder material was characterized using scanning electron microscopy, which showed colloidal nanoparticles of 100–200 nm in diameter and slightly irregular in shape. The maximum adsorption capacity of the ion imprinted particles was 63.36 μmol/g. The experimental conditions such as nature and concentration of eluent, pH, adsorption and desorption times, weight of the polymer material, aqueous phase and desorption agent volumes were also studied. Finally, selectivity of the prepared IIP particles toward rubidium ion was investigated in the presence of some foreign metal ions.  相似文献   

6.
In this paper, the novel surface molecularly imprinted polymers based on dendritic‐grafting magnetic nanoparticles were developed to enrich and separate glibenclamide in health foods. The density functional theory method was used to give theoretical directions to the synthesis of molecularly imprinted polymers. The polymers were prepared by using magnetic nanoparticles as supporting materials, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross‐linker. The characteristics of magnetic nanoparticles and polymers were measured by transmission electron microscope and SEM, respectively. The enriching ability of molecularly imprinted polymers was measured by Freundlich Isotherm. The molecularly imprinted polymers were used as dispersive SPE materials to enrich, separate, and detect glibenclamide in health foods by HPLC. The average recoveries of glibenclamide in spiked health foods were 81.46–93.53% with the RSD < 4.07%.  相似文献   

7.
In this study, the use of monolithic molecularly imprinted polymers in a micropipette tip format allowing the simple and fast extraction of flavonoids from standard solutions and a black tea sample is demonstrated. The imprinted polymer employed quercetin, methacrylic acid or 4‐vinylpyridine, and ethylene glycol dimethacrylate as template, functional monomer, and cross‐linker, respectively. Surface morphologies of the quercetin‐imprinted polymers and the corresponding nonimprinted polymers were characterized by SEM. Extraction of flavonoid standards was performed to evaluate the selectivity and recovery with these imprinted and nonimprinted polymers. Flavonoid compositions in aliquots eluted from the tips were identified using fast GC with flame ionization detection. Maximum specific capacities of 0.2, 5.7, and 16.0 mg/g for catechin, morin, and quercetin, respectively, were obtained with the imprinted polymer prepared with methacrylic acid, with the corresponding recoveries of 99.8, 98.8, and 95.4%, respectively. Efficient extraction by the quercetin‐imprinted polymer of epicatechin, catechin, and quercetin from an apple‐flavored black tea sample was achieved, with GC–MS employed for compound identification for both the tea and extracted samples.  相似文献   

8.
The quantum chemical method was applied for screening functional monomers in the rational design of salbutamol‐imprinted polymers. Salbutamol was the template molecule, and methacrylic acid was the single functional monomer. The LC‐WPBE/6–31G(d,p) method was used to investigate the geometry optimization, active sites, natural bond orbital charges, binding energies of the imprinted molecule, and solvation energy. The mechanism of action between salbutamol and methacrylic acid was also discussed. The theoretical results show that salbutamol interacts with functional monomers by hydrogen bonds, and the salbutamol‐imprinted polymers with a ratio of 1:4 (salbutamol/methacrylic acid) in acetonitrile had the highest stability. The salbutamol‐imprinted polymers were prepared by precipitation polymerization. The experimental results indicated that the maximum adsorption capacity for salbutamol toward molecularly imprinted polymers was 7.33 mg/g, and the molecularly imprinted polymers had a higher selectivity for salbutamol than for norepinephrine and terbutaline sulfate. Herein, the studies can provide theoretical and experimental references for the salbutamol molecular imprinted system.  相似文献   

9.
Molecularly imprinted polymers bearing atrazine transforming activity were prepared by using newly designed templates that are atrazine analogues attached with an allyl or a styryl group via a disulfide bond at the 6-position, methacrylic acid as a functional monomer and styrene/divinylbenzene as crosslinkers. After polymerization, the disulfide bond was reduced to remove the atrazine moiety from the polymer matrix, followed by oxidation of the remaining thiol group to generate sulfonic acid (post-imprinting treatment), so that both a methacrylic acid residue and a sulfonic acid residue existed in an atrazine-imprinted cavity. The polymers indicated the selective binding of triazine herbicides and catalytic activity for methanolysis at the 6-position of atrazine, yielding a low toxic atraton.  相似文献   

10.
A novel and simple supported ionic‐liquid‐based solid‐phase extraction method for the determination of triazine herbicides in rice was developed. Glass slides were functionalized by an ionic liquid, 1‐carboxyethyl‐3‐methylimidazolium chloride, and were used for the simultaneous extraction of seven triazine herbicides in rice samples. The effects of the type of extraction solvent, the extraction time, the type and volume of loading solvent, and the type of eluting solvent on the extraction efficiency were investigated and optimized. Under the optimum operation conditions, the limits of detection for seven triazine herbicides in rice samples obtained by high‐performance liquid chromatography were 3.16–5.42 ng/g, which were lower than the maximum residue levels established by various organizations. The linear correlation coefficients were higher than 0.9975 in the concentration range of 0.015–1.08 μg/g for the seven triazine herbicides. The recoveries of the seven triazine herbicides at the two concentration levels of 0.15 and 0.45 μg/g are between 82.47 and 104.21%, with relative standard deviations of 0.69–9.19%. The intra‐ and inter‐day (n = 5) precisions for all triazine herbicides at the spiked level of 0.30 μg/g were 1.72–11.71%.  相似文献   

11.
A simple and efficient liquid phase microextraction based on solidification of floating organic drop coupled with gas chromatography–flame photometric detection was developed for the extraction and determination of some triazine herbicides (metribuzin, simetryn, ametryn and prometryn) in soil samples. The type and volume of the extraction solvent, sample solution temperature, salt addition, stirring rate, and the extraction time were optimized. Under the optimal conditions, the linear response was observed over the range of 10–2000?µg?kg?1 for metribuzin and 2–500?µg?kg?1 for simetryn, ametryn, and prometryn, respectively, with the correlation coefficients (r) varying from 0.9990 to 0.9992. The limits of detection were in the range between 0.2 and 1.0?µg?kg?1 (S/N?=?3?:?1). The recoveries of the target analytes for the spiked soil samples ranged from 75.5% to 97.3%, with the relative standard deviation values less than 7.2% (n?=?5). The enrichment factors were achieved ranging from 122 to 336. The developed method was applied for the preconcentration and determination of triazine herbicides in real soil samples and a satisfactory result was obtained.  相似文献   

12.
The influence of polymer matrix on the extraction efficiency for Cu(II) and selectivity against metal ions such as Ni(II), Cd(II), Pb(II) of Cu(II) imprinted copolymer gels was described. The functional monomers investigated include the weakly basic 4‐vinylpyridine (4‐VP) and its mixure with the acidic and hydrogen binding methacrylic acid. Copolymer gels were prepared by dispersion cross‐linking copolymerization using Cu(II)–4‐(2‐pyridylazo)resorcinol complex, Cu(II), or 4‐(2‐pyridylazo)resorcinol as templates. The chemical structure and morphology of the Cu(II)‐imprinted microbeads are defined using elemental analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. Extraction efficiencies of newly synthesized sorbents were studied by batch procedure. The prepared copolymer gel with 4‐VP as monomer and Cu(II)–4‐(2‐pyridylazo)resorcinol complex has higher capacity and selectivity toward Cu(II) than the copolymer gels prepared using the mixture of methacrylic acid and 4‐VP. This new sorbent can be used as an effective SPE material for the highly selective preconcentration and separation of Cu(II) in sea water samples. It shows high mechanical and chemical stability.  相似文献   

13.
气相色谱法同时测定玉米中12种三嗪类除草剂的残留量   总被引:6,自引:0,他引:6  
张敬波  姜文凤  董振霖  赵守成  卫锋 《色谱》2006,24(6):648-651
建立了气相色谱-氮磷检测器同时检测玉米中12种三嗪类除草剂(西玛通、西玛津、阿特拉津、扑灭津、特丁通、特丁津、环丙津、西草净、扑草净、特丁净、甲氧丙净、环嗪酮)残留量的方法。玉米样品用乙腈萃取,强阳离子交换(SCX)固相萃取柱净化后,用DB-5弹性石英毛细管柱(30 m×0.25 mm i.d.×0.25 μm)分离样品,氮磷检测器测定。12种三嗪类除草剂在0.01~2.0 mg/L范围内线性关系关系良好,相关系数均大于0.998;最低检测限为0.01 mg/kg;添加回收率为84.0%~106.8%;相对标准偏差为0.9%~4.7%。  相似文献   

14.
A magnetic dispersion extraction method was developed based on a molecularly imprinted magnetic microsphere (MIMM) for the selective clean‐up and enrichment of tetracycline antibiotics from milk samples. The MIMMs were prepared by inverse‐emulsion suspension polymerization, using doxycycline, trimethylolpropane trimethacrylate, acrylamide, methacrylic acid, and surface‐modified Fe3O4 as a template molecule, crosslinker, functional monomer, and magnetic component, respectively. Synthesis and extraction conditions were optimized for obtaining excellent affinity and high selectivity. The magnetism, covering amount, and selectivity of the magnetic microspheres were characterized by a vibrating sample magnetometer, thermogravimetric analysis, and a competitive recognition experiment. The MIMMs were applied to separate tetracycline antibiotics from milk samples by magnetic dispersion extraction, and an enrichment factor of 9.28 and a good sample clean‐up were obtained. The average recoveries of four tetracycline antibiotics were obtained in the range of 74.5–93.8% with a precision of 1.2–5.2%. The LODs and LOQs of the proposed method were in the range of 7.4–19.4 and 24.7–64.7 μg/kg, respectively. The results indicated that magnetic dispersion extraction using MIMMs is a powerful tool for food‐sample pretreatment with high selectivity and a simplified procedure.  相似文献   

15.
Measurements of differential capacity vs. potential have been made for a series of s‐triazine herbicides at different concentrations. In all cases the decrease in capacity was independent of the applied potential, so the adsorption is also independent of the potential. From the measurements it can be established that the adsorption follows Langmuir type isotherms. Adsorption constants were obtained for the different herbicides at 25 °C (simetryn, simazine, terburyn and prometon) as well as those to simetryn at different temperatures, from which the adsorption enthalpy of this herbicide was calculated being its value of 17.5 kJ mol?1.  相似文献   

16.
Magnetic nanoparticles have been surface modified by molecular imprinting and evaluated as selective sorbents for the extraction of triazines from environmental waters. The use of propazine as template allowed us to synthesize a selective material able to simultaneously recognize and selective extract not only the template but also several other herbicides of the same family. A magnetic molecularly imprinted‐based dispersive solid‐phase extraction procedure was developed and fully optimized. Magnetic molecularly imprinted polymer particles can be easily collected and separated from liquid solvents and samples with the help of an external magnetic field, avoiding in that way any centrifugation or filtration steps, which represents a remarkable advantage over traditional procedures. Under optimum conditions, selective extraction of several triazines (cyanazine, simazine, atrazine, propazine, and terbutylazine) from environmental water samples was performed prior to final determination by high‐performance liquid chromatography with diode‐array detection. Recoveries for the studied triazines were within the range of 75.2–94.1%, with relative standard deviations lower than 11.3% (= 3). The limits of detection were within 0.16–0.51 µg/L, depending upon the triazine and the type of sample analyzed.  相似文献   

17.
Molecularly imprinted polymers for strobilurin fungicides were prepared by precipitation polymerization employing azoxystrobin as template molecular together with methacrylic acid monomer and trimethylolpropane triacrylate cross‐linker. Morphological characterization showed molecularly imprinted polymers were uniform spherical particles with about 0.2 μm in diameter, while the morphologies of nonimprinted polymers were irregular bulk. The equilibrium binding and selective experiments proved that molecularly imprinted polymers possessed a higher affinity toward four fungicides compared to nonimprinted polymers and heterogeneous binding sites were found in the molecularly imprinted polymers. Molecularly imprinted solid‐phase extraction conditions, including sample loading solvents, selective washing, and elution solvents, were carefully optimized. The developed method showed good recoveries (70.0–114.0%) with relative standard deviations in range of 1.0–9.8% (n  =  3) for samples (cucumber and peach) spiked at three different levels (10, 50, and 100 μg/ kg). The detection limit (signal/noise = 3) ranged from 0.01 to 0.08 μg/kg. The results demonstrated good potential use of this convenient and highly efficient method for determining trace strobilurin fungicides in agricultural products.  相似文献   

18.
The development and application of an imazethapyr molecularly imprinted polymer‐based solid‐phase microextraction coating were investigated. A novel molecularly imprinted polymer coating with imazethapyr as template was firstly prepared by a one‐step in situ polymerization method, and demonstrated specific selectivity to imidazolinone herbicides in complicated samples. The structural characteristics and extraction performance of the imazethapyr molecularly imprinted polymer coating were studied. The molecularly imprinted polymer coating was homogeneous, dense, and heat and solvent resistant. Adsorption capacity experiments showed that the molecularly imprinted polymer coating could selectively extract imazethapyr and its structural analogs, and the maximum adsorption capacity was 2.5 times as much as that of the nonimprinted polymer coating. A method for the determination of five imidazolinones by imazethapyr molecularly imprinted polymer solid‐phase microextraction coupled with high‐performance liquid chromatography was developed. The linear range was 0.50–50 μg/L for imazameth, imazamox, imazapyr acid, and imazethapyr, and 1.0–100 μg/L for imazaquin acid, and the detection limits were within the range of 0.070–0.29 μg/L. The method was applied to simultaneous and multiresidual determinations of trace imidazolinones in rice, peanut, and soil samples with satisfactory recoveries of 60.6–99.5, 79.1–123, and 61.3–116%, respectively, and relative standard deviations of 0.40–10%, which indicated that this method was suitable for the trace analysis of imidazolinones in complex food and environmental samples.  相似文献   

19.
A computational model was proposed to evaluate the affinity and selectivity of 2-(3,4-dimethoxyphenyl)ethylamine (homoveratrylamine) imprinted polymers. Four functional monomers: methacrylic acid, 1-vinylimidazole, 4-vinylpyridine, and allylamine were taken into account. Two dielectric constants were used for solvent simulations: a value of ?=2.38r(ij) for toluene was used in the analysis of prepolymerization complexes, and a value of ?=36r(ij) for methanol-water was used in the investigations of adsorption. Theoretical analysis predicted the highest affinity for the polymer synthesized from methacrylic acid. Experimental results confirmed the finding. The prepolymerization complex formed by homoveratrylamine and four methacrylic acid molecules was used to design the polymer cavity. The selectivity of the polymer was analyzed as a simulation of adsorption of six compounds in the cavity by docking procedure. Selected compounds are structurally related to the template or can be present in biological samples. The designed polymer has high selectivity towards homoveratrylamine. The proposed computational procedure could be used for successful evaluation of the imprinted polymers.  相似文献   

20.
以氯磺隆(CS)为模板分子,甲基丙烯酸为功能单体,三羟甲基丙烷三甲基丙烯酸酯为交联剂,在二氯甲烷氛围中,经沉淀聚合制备氯磺隆分子印迹聚合物(CS-MIP)微球。将该聚合物微球作为填料制得分子印迹固相萃取柱用于样品前处理,建立了分子印迹固相萃取-高效液相色谱(MIP-SPE-HPLC)同时检测烟叶中6种磺酰脲类除草剂残留的分析方法。针对氯磺隆、甲磺隆、苄嘧磺隆、苯磺隆、胺苯磺隆和烟嘧磺隆6种磺酰脲类除草剂,在烟叶中加标0.50~50 μg/g,经氯磺隆分子印迹固相萃取柱(CS-MIP-SPE)净化和富集,高效液相色谱(HPLC)检测,其平均回收率为77.60%~102.05%,相对标准偏差为0.16%~7.07%,检出限为0.08~0.46 μg/g。将MIP-SPE-HPLC方法用于实际农药残留检测,结果表明可同时满足烟叶中多种磺酰脲类除草剂残留量的检测要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号