首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
    
Respiratory chain complexes convert energy by coupling electron flow to transmembrane proton translocation. Owing to a lack of atomic structures of cytochrome bc1 complex (Complex III) from thermophilic bacteria, little is known about the adaptations of this macromolecular machine to hyperthermophilic environments. In this study, we purified the cytochrome bc1 complex of Aquifex aeolicus, one of the most extreme thermophilic bacteria known, and determined its structure with and without an inhibitor at 3.3 Å resolution. Several residues unique for thermophilic bacteria were detected that provide additional stabilization for the structure. An extra transmembrane helix at the N‐terminus of cyt. c1 was found to greatly enhance the interaction between cyt. b and cyt. c1, and to bind a phospholipid molecule to stabilize the complex in the membrane. These results provide the structural basis for the hyperstability of the cytochrome bc1 complex in an extreme thermal environment.  相似文献   

2.
3.
The PD‐1/PD‐L1 interaction has emerged as a significant target in cancer immunotherapy. Current medications include monoclonal antibodies, which have shown impressive clinical results in the treatment of several types of tumors. The cocrystal structure of human PD‐1 and PD‐L1 is expected to be a valuable starting point for the design of novel inhibitors, along with the recent crystal structures with monoclonal antibodies, small molecules, and macrocycles.  相似文献   

4.
5.
6.
Many therapeutically relevant protein–protein interactions contain hot‐spot regions on secondary structural elements, which contribute disproportionately to binding enthalpy. Mimicry of such α‐helical regions has met with considerable success, however the analogous approach for the β‐strand has received less attention. Presented herein is a foldamer for strand mimicry in which dipolar repulsion is a central determinant of conformation. Computation as well as solution‐ and solid‐phase data are consistent with an ensemble weighted almost exclusively in favor of the desired conformation.  相似文献   

7.
Structural mass spectrometry (MS) is gaining increasing importance for deriving valuable three‐dimensional structural information on proteins and protein complexes, and it complements existing techniques, such as NMR spectroscopy and X‐ray crystallography. Structural MS unites different MS‐based techniques, such as hydrogen/deuterium exchange, native MS, ion‐mobility MS, protein footprinting, and chemical cross‐linking/MS, and it allows fundamental questions in structural biology to be addressed. In this Minireview, I will focus on the cross‐linking/MS strategy. This method not only delivers tertiary structural information on proteins, but is also increasingly being used to decipher protein interaction networks, both in vitro and in vivo. Cross‐linking/MS is currently one of the most promising MS‐based approaches to derive structural information on very large and transient protein assemblies and intrinsically disordered proteins.  相似文献   

8.
Cytochrome (cyt) c transports electrons from Complex III to Complex IV in mitochondria. Cyt c is ordinarily anchored to the mitochondrial membrane through interaction with cardiolipin (CL), however its release into the cytosol initiates apoptosis. The cyt c interaction site with CL‐containing bicelles was characterized by NMR spectroscopy. Chemical shift perturbations in cyt c signals upon interaction with bicelles revealed that a relatively wide region, which includes the A‐site, the CXXCH motif, and the N‐ and C‐terminal helices, and contains multiple Lys residues, interacts cooperatively with CL. The specific cyt c–CL interaction increased with increasing CL molecules in the bicelles. The location of the cyt c interaction site for CL was similar to those for Complex III and Complex IV, thus indicating that cyt c recognizes lipids and partner proteins in a similar way. In addition to elucidating the cyt c membrane‐binding site, these results provide insight into the dynamic aspect of cyt c interactions in mitochondria.  相似文献   

9.
10.
Inhibition of protein–protein interactions (PPIs) represents a major challenge in chemical biology and drug discovery. α‐Helix mediated PPIs may be amenable to modulation using generic chemotypes, termed “proteomimetics”, which can be assembled in a modular manner to reproduce the vectoral presentation of key side chains found on a helical motif from one partner within the PPI. In this work, it is demonstrated that by using a library of N‐alkylated aromatic oligoamide helix mimetics, potent helix mimetics which reproduce their biophysical binding selectivity in a cellular context can be identified.  相似文献   

11.
12.
    
Many molecular chaperones are promiscuous and interact with a wide range of unfolded, quasi‐native, and native client proteins. The mechanisms by which chaperones interact with the highly diverse structures of native clients thus remain puzzling. In this work, we investigate at the atomic level how three ATP‐independent chaperones interact with a β‐sheet‐rich protein, the Fyn SH3 domain. The results reveal that the chaperone Spy recognizes the locally frustrated surface of the client Fyn SH3 and that the interaction is transient and highly dynamic, leaving the chaperone‐interacting surface on Fyn SH3 solvent accessible. The two alternative molecular chaperones SurA and Skp recognize the same locally frustrated surface of the Fyn SH3 domain. These results indicate dynamic recognition of frustrated segments as a common mechanism underlying the chaperone–native client interaction, which also provides a basis for chaperone promiscuousness.  相似文献   

13.
14.
15.
16.
17.
With the aim of developing polyproline type II helix (PPII) secondary‐structure mimetics for the modulation of prolin‐rich‐mediated protein–protein interactions, the novel diproline mimetic ProM‐2 was designed by bridging the two pyrrolidine rings of a diproline (Pro–Pro) unit through a Z‐vinylidene moiety. This scaffold, which closely resembles a section of a PPII helix, was then stereoselectively synthesized by exploiting a ruthenium‐catalyzed ring‐closing metathesis (RCM) as a late key step. The required vinylproline building blocks, that is, (R)‐N‐Boc‐2‐vinylproline (Boc=tert‐butyloxycarbonyl) and (S,S)‐5‐vinylproline‐tert‐butyl ester, were prepared on a gram scale as pure stereoisomers. The difficult peptide coupling of the sterically demanding building blocks was achieved in good yield and without epimerization by using 2‐(1H‐7‐azabenzotriazol‐1‐yl)‐1,1,3,3‐tetramethyluronium hexafluorophosphate (HATU)/N,N‐diisopropylethylamine (DIPEA). The RCM proceeded smoothly in the presence of the Grubbs II catalyst. Stereostructural assignments for several intermediates were secured by X‐ray crystallography. As a proof of concept, it was shown that certain peptides containing ProM‐2 exhibited improved (canonical) binding towards the Ena/VASP homology 1 (EVH1) domain as a relevant protein interaction target.  相似文献   

18.
Described is a facile helix‐nucleating template based on a tethered aspartic acid at the N‐terminus [terminal aspartic acid (TD)]. The nucleating effect of the template is subtly influenced by the substituent at the end of the side‐chain‐end tether as indicated by circular dichroism, nuclear magnetic resonance, and molecular dynamics simulations. Unlike most nucleating strategies, the N‐terminal amine is preserved, thus enabling further modification. Peptidomimetic estrogen receptor modulators (PERMs) constructed using this strategy show improved therapeutic properties. The current strategy can be regarded as a good complement to existing helix‐stabilizing methods.  相似文献   

19.
Minimalist secondary structure mimics are typically made to resemble one interface in a protein–protein interaction (PPI), and thus perturb it. We recently proposed suitable chemotypes can be matched with interface regions directly, without regard for secondary structures. Here we describe a modular synthesis of a new chemotype 1 , simulation of its solution‐state conformational ensemble, and correlation of that with ideal secondary structures and real interface regions in PPIs. Scaffold 1 presents amino acid side‐chains that are quite separated from each other, in orientations that closely resemble ideal sheet or helical structures, similar non‐ideal structures at PPI interfaces, and regions of other PPI interfaces where the mimic conformation does not resemble any secondary structure. 68 different PPIs where conformations of 1 matched well were identified. A new method is also presented to determine the relevance of a minimalist mimic crystal structure to its solution conformations. Thus dld ‐ 1 faf crystallized in a conformation that is estimated to be 0.91 kcal mol?1 above the minimum energy solution state.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号