首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cyclophane is reported incorporating two units of a heptagon-containing extended polycyclic aromatic hydrocarbon (PAH) analogue of the hexa-peri-hexabenzocoronene (HBC) moiety (hept-HBC). This cyclophane represents a new class of macrocyclic structures that incorporate for the first time seven-membered rings within extended PAH frameworks. The saddle curvature of the hept-HBC macrocycle units induced by the presence of the nonhexagonal ring along with the flexible alkyl linkers generate a cavity with shape complementarity and appropriate size to enable π interactions with fullerenes. Therefore, the cyclophane forms host–guest complexes with C60 and C70 with estimated binding constants of Ka=420±2 m −1 and Ka=(6.49±0.23)×103 m −1, respectively. As a result, the macrocycle can selectively bind C70 in the presence of an excess of a mixture of C60 and C70.  相似文献   

2.
3.
Dynamic helicity in a folded macrocycle and control of the helical preference are described. We designed macrocycle 1 with a dual mode of folding through the integration of two flexible units that are arranged twice to form a cyclic structure. As a folding unit, we used a terephthalamide skeleton and a Z‐shaped hydrocarbon: the former acted as a control unit to induce a preference of a particular sense of dynamic helicity and the latter was just a spacer. A terephthalamide unit provided a binding site for capturing a ditopic hydrogen‐bonding guest when it adopted helically folded syn forms (M/P). Thus, only the terephthalamide unit controlled the helical sense of dynamic helicity in a folded macrocycle through the supramolecular transmission of chirality upon complexation with a chiral ditopic guest. In addition, chirality on a host could also contribute to the control of the helical preference in a folded macrocycle, which led to exceptionally enhanced chiroptical signals.  相似文献   

4.
Multicomponent network formation by using a shape‐persistent macrocycle ( MC6 ) at the interface between an organic liquid and Au(111) surface is demonstrated. MC6 serves as a versatile building block that can be coadsorbed with a variety of organic molecules based on different types of noncovalent interactions at the liquid–solid interface. Scanning tunneling microscopy (STM) reveals the formation of crystalline bicomponent networks upon codeposition of MC6 with aromatic molecules, such as fullerene (C60) and coronene. Tetracyanoquinodimethane, on the other hand, was found to induce disorder into the MC6 networks by adsorbing on the rim of the macrocycle. Immobilization of MC6 itself was studied in two different noncovalently assembled host networks. MC6 assumed a rather passive role as a guest and simply occupied the host cavities in one network, whereas it induced a structural transition in the other. Finally, the central cavity of MC6 was used to capture C60 in a complex three‐component system. Precise immobilization of organic molecules at discrete locations within multicomponent networks, as demonstrated here, constitutes an important step towards bottom‐up fabrication of functional surface‐based nanostructures.  相似文献   

5.
Rotaxane‐based molecular shuttles are often operated using low‐symmetry axles and changing the states of the binding stations. A molecular shuttle capable of directional shuttling of an acid‐responsive cone‐like macrocycle on a single‐state symmetric dumbbell axle is now presented. The axle contains three binding stations: one symmetric di(quaternary ammonium) station and two nonsymmetric phenyl triazole stations arranged in opposite orientations. Upon addition of an acid, the protonated macrocycle shuttles from the di(quaternary ammonium) station to the phenyl triazole binding station closer to its butyl groups. This directional shuttling presumably originates from charge repulsion and an orientational binding preference between the cone‐like cavity and the nonsymmetric phenyl triazole station. This mechanism for achieving directional shuttling by manipulating only the wheels instead of the tracks is new for artificial molecular machines.  相似文献   

6.
Engineering self‐templating inorganic architectures is critical for the development of bottom‐up approaches to nanoscience, but systems with a hierarchy of templates are elusive. Herein we describe that the cluster‐anion‐templated (CAT) assembly of a {CAT}?{Mo24Fe12} macrocycle forms a giant ca. 220 nm3 unit cell containing 16 macrocycles clustered into eight face‐shared tetrahedral cluster‐of‐clusters assemblies. We show that {CAT}?{Mo24Fe12} with different CATs gives the compounds 1 – 4 for CAT=Anderson {FeMo6} ( 1 ), Keggin {PMo12} ( 2 ), Dawson {P2W18} ( 3 ), and {Mo12O36(HPO3)2} ( 4 ) polyoxometalates. “Template‐free” assembly can be achieved, whereby the macrocycle components can also form a template in situ allowing template to macrocycle to superstructure formation and the ability to exchange the templates. Furthermore, the transformation of template clusters within the inorganic macrocycle {Mo24Fe12} allows the self‐generation of an uncapped {Mo12O36(HPO3)2} in compound 4 .  相似文献   

7.
6,7‐Bismethoxy‐2,11‐dihydroxytetraphenylene ( 1 ), a novel building block of tetraphenylene‐derived macrocycles, was synthesized via palladium‐catalyzed cross‐coupling reactions and characterized by X‐ray diffraction. The relevant macrocyclic hosts derived from 1 have well‐defined structures with fixed conformations both in solution and solid state. They showed efficient and unique properties toward complexation with fullerenes C60 and C70 in toluene.  相似文献   

8.
A new class of chiral macrocyclic arene composed of three chiral 2,6‐dihydroxyltriptycene subunits bridged by methylene groups was designed and synthesized. Structural studies showed that the macrocyclic molecule adopts a hex‐nut‐like structure with a helical chiral cavity and highly fixed conformation. Efficient resolution was achieved through the introduction of chiral auxiliaries to give a couple of enantiopure macrocycles, which exhibited high enantioselectivity towards three pairs of chiral compounds containing a trimethylamino group.  相似文献   

9.
10.
11.
《化学:亚洲杂志》2017,12(19):2576-2582
Complexation between (O ‐methyl)6‐2,6‐helic[6]arene and a series of tertiary ammonium salts was described. It was found that the macrocycle could form stable complexes with the tested aromatic and aliphatic tertiary ammonium salts, which were evidenced by 1H NMR spectra, ESI mass spectra, and DFT calculations. In particular, the binding and release process of the guests in the complexes could be efficiently controlled by acid/base or chloride ions, which represents the first acid/base‐ and chloride‐ion‐responsive host–guest systems based on macrocyclic arenes and protonated tertiary ammonium salts. Moreover, the first 2,6‐helic[6]arene‐based [2]rotaxane was also synthesized from the condensation between the host–guest complex and isocyanate.  相似文献   

12.
Synthetic receptors that function in water are important for the qualitative and quantitative detection of anions, which may act as pollutants in the environment or play important roles in biological processes. Neutral receptors are particularly appealing because they are often more selective than positively charged receptors; however, their affinity towards anions in pure water is only in range of 1–103 L mol?1. The anion‐templated synthesis of a water‐soluble bambusuril derivative is shown to be an outstanding receptor for various inorganic anions in pure water, with association constants of up to 107 L mol?1. Furthermore, the macrocycle discriminates between anions with unprecedented selectivity (up to 500 000‐fold). We anticipate that the combination of remarkable affinity and selectivity of this macrocycle will enable the efficient detection and isolation of diverse anions in aqueous solutions, which is not possible with current supramolecular systems.  相似文献   

13.
A dynamic covalent bond is one of the ideal linkages for the construction of large and robust organic architectures. In the present article, we show how organic templates can efficiently transform a complex dynamic imine library into a dynamic imine macrocycle. Not only is the constitution well controlled, but also the syn/anti host configuration is efficiently selected and even the orientation of the guest in the asymmetric cavity of the host can be well aligned. This is attributed to the delicate balance and the cooperation of multiple noncovalent interactions between the hosts and the guests. Through sequential additions of three guests in appropriate amounts, controlled structural reconfiguration of dynamic covalent architectures has been achieved for the first time.  相似文献   

14.
Hexagonal shape‐persistent macrocycles (SPMs) consisting of three pyridine and three phenol rings linked with acetylene bonds were developed as a preorganized host for saccharide recognition by push–pull‐type hydrogen bonding. Three tert‐butyl or 2,4,6‐triisopropylphenyl substituents were introduced on the host to suppress self‐aggregation by steric hindrance. In spite of the simple architecture, association constants Ka of the host with alkyl glycoside guests reached the order of 106 m ?1 on the basis of UV/Vis titration experiments. This glycoside recognition was much stronger than that in the cases of acyclic equivalent hosts because of the entropic advantage brought by preorganization of the hydrogen‐bonding sites. Solid–liquid extraction and liquid–liquid transport through a liquid membrane were demonstrated by using native saccharides, and much preference to mannose was observed.  相似文献   

15.
Size‐complementary cyclotriveratrylene (CTV)‐based hosts can incarcerate C76, C78, and C84, thus allowing the selective isolation of these higher‐order fullerenes from a commercially available mixture of fullerenes. The hemicarceplexes, formed after the encapsulation of the size‐complementary fullerenes within the hosts, are isolated by column chromatography and released at elevated temperature, thereby leading to the isolation of C76/C78 and C84 in good purities (up to 95 and 88 %, respectively).  相似文献   

16.
17.
18.
The size‐ and orientation‐selective formation of the shortest‐possible C70 peapod in solution and in the solid state by using the shortest structural unit of an “armchair” carbon nanotube (CNT), cycloparaphenylene (CPP), has been studied. [10]CPP and [11]CPP exothermically formed 1:1 complexes with C70, thereby giving the resulting peapods. A van′t Hoff plot analysis revealed that the formation of these complexes in 1,2‐dichlorobenzene was mainly driven by entropy, whereas the theoretical calculations suggested that the formation of the complex in the gas phase was predominantly driven by enthalpy. C70 was found to exist in two distinct orientations inside the CPP cavity, namely “lying” and “standing”, depending on the specific size of the CPP. The theoretical calculations and the X‐ray crystallographic analysis revealed that the interactions between [10]CPP and the short axis of C70 in its lying orientation were isotropic and similar to those observed between [10]CPP and C60. However, the interactions between [11]CPP and C70 in its standing orientation were anisotropic, thereby involving the radial deformation of [11]CPP into an ellipsoidal shape. This “induced fit” maximized the van der Waals interactions with the long axis of C70. Theoretical calculations revealed that the deformation occurred readily with low energy loss, thus suggesting that CPPs are highly radially elastic molecules. These results also indicate that the same type of radial deformation should occur in CNT peapods that encapsulate anisotropic fullerenes.  相似文献   

19.
A water‐soluble surfactant consisting of hexa‐peri‐hexabenzocoronene (HBC) as hydrophobic aromatic core and hydrophilic carboxy substituents was synthesized. It exhibited a self‐assembled nanofiber structure in the solid state. Profiting from the π interactions between the large aromatic core of HBC and graphene, the surfactant mediated the exfoliation of graphite into graphene in polar solvents, which was further stabilized by the bulky hydrophilic carboxylic groups. A graphene dispersion with a concentration as high as 1.1 mg L?1 containing 2–6 multilayer nanosheets was obtained. The lateral size of the graphene sheets was in the range of 100–500 nm based on atomic force microscope (AFM) and transmission electron microscope (TEM) measurements.  相似文献   

20.
Phenol‐based macrocyclic arenes have been widely used in supramolecular chemistry, significantly enriching the toolbox of the field. In contrast, naphthol‐based macrocyclic arenes are rather underdeveloped. Very recently, Gaeta and co‐workers successfully synthesized such macrocycles (referred to as prism[n]arenes) with good guest‐binding ability by reacting 2,6‐dimethoxynaphthalene with paraformaldehyde under optimized conditions. In view of the simple synthesis and good host–guest chemistry, we anticipate that this macrocycle will find similar success and wide applications as the phenol‐based macrocyclic arenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号