首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescent copper nanoclusters (CuNCs) have been widely used in chemical sensors, biological imaging, and light-emitting devices. However, individual fluorescent CuNCs have limitations in their capabilities arising from poor photostability and weak emission intensities. As one kind of aggregation-induced emission luminogen (AIEgen), the formation of aggregates with high compactness and good order can efficiently improve the emission intensity, stability, and tunability of CuNCs. Here, DNA nanoribbons, containing multiple specific binding sites, serve as a template for in situ synthesis and assembly of ultrasmall CuNCs (0.6 nm). These CuNC self-assemblies exhibit enhanced luminescence and excellent fluorescence stability because of tight and ordered arrangement through DNA nanoribbons templating. Furthermore, the stable and bright CuNC assemblies are demonstrated in the high-sensitivity detection and intracellular fluorescence imaging of biothiols.  相似文献   

2.
Copper nanoclusters (CuNCs) as a new class of fluorescent materials have attracted a great deal of interest due to their outstanding fluorescence properties. In this work, a variety of organic solvents were used to induce self-assembly of glutathione-capped CuNCs (GSH-CuNCs) to form ordered assemblies with enhanced fluorescence properties. Assemblies with multicolor fluorescence emission were constructed on the basis of the aggregation-induced emission (AIE) of GSH-CuNCs and the solvent effect. The fluorescence emission from these GSH-CuNCs assemblies can also be tuned from yellow to purple by changing the organic solvent. A possible mechanism based on the size of the assemblies and electron transfer was explored to explain the solvent effects on GSH-CuNCs. Stimuli-responsive nanoswitches with excellent reversibility can be controlled by changing the type of organic solvent and the ratio of the organic solvent to the aqueous solution of GSH-CuNCs. As the CuNCs assemblies exhibit strong, stable, and color-tunable fluorescence, they were employed as color-conversion materials for recognizing different organic solvents.  相似文献   

3.
金属纳米团簇(MNCs)作为一种新型的纳米材料,具有合成方法简单、光稳定性强、毒性低、生物相容性好以及发光效率高等优点。在本研究中,使用“一锅法”合成谷胱甘肽保护的铜纳米团簇。在激发波长为370 nm时,GS@CuNCs的荧光发射波长在610 nm左右。铜纳米团簇可以通过有溶剂诱导和阳离子诱导两种方法聚集诱导增强其荧光强度。通过测定在不同溶剂(乙醇、甲醇、N, N-二甲基甲酰胺)中铜纳米团簇的荧光强度,探究了溶剂极性对聚集的影响。研究结果表明:在水溶液中铜纳米团簇只发射弱的荧光,随着乙醇含量从0%到85%,其荧光强度逐渐增强。此外,我们开发了一种新的选择性好、灵敏性高的检测铝离子的荧光探针。线性范围为2–20 μmol·L-1,且检测限(LOD)为33 nmol·L-1。进一步探究可得,乙醇和铝离子能使GS@CuNCs荧光强度显著增加的机理为聚集诱导荧光增强。  相似文献   

4.
Single‐handed helical silica nanotubes containing chiral organic self‐assemblies were prepared by using a supramolecular templating approach. After carbonization and the removal of the silica, single‐handed helical carbonaceous nanotubes that contained twisted carbonaceous nanoribbons were obtained. It is believed that the nanotubes formed as a result of the adsorption of low‐molecular‐weight gelators. The twisted nanoribbons were formed because of the carbonization of the organic self‐assemblies. The samples were characterized by using field‐emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Raman spectroscopy, and circular dichroism. For the samples carbonized at 900 °C for 3.0 h, a partially graphitized structure was identified. The circular dichroism (CD) spectra indicated that the twisted nanoribbons exhibited optical activity. The CD spectrum was simulated by using time‐dependent density functional theory. The results suggested that the CD signals originated from the chiral stacking of aromatic rings.  相似文献   

5.
6.
In vivo fluorescence imaging in the second near‐infrared window (NIR‐II) affords deep‐tissue penetration and high spatial resolution. Herein, we present a new type of Tm3+‐sensitized lanthanide nanocrystals with both excitation (1208 nm) and emission (1525 nm) located in the NIR‐II window for in vivo optical information storage and decoding. Taking advantage of the tunable fluorescence lifetimes, the optical multiplexed encoding capacity is enhanced accordingly. Micro‐devices with QR codes featuring the NIR‐II fluorescence‐lifetime multiplexed encoding were implanted into mice and were successfully decoded through time‐gated fluorescence imaging technology.  相似文献   

7.
Dynamic assembly inclusion complexes of tweezer-type bis(zinc porphyrin) (1) with di(4-pyridyl)porphyrin derivatives have been designed and constructed. The complexes are induced by Zn-N coordination, and the weak binding allows the large-size di(4-pyridyl)porphyrin guests in random rotation. Dynamic characteristics of these assemblies, such as ligand exchange and dynamic fluorescence quenching, have been investigated by 1H NMR, UV-Vis and fluorescence spectra. The stability of such assembly has pronounced dependence on the size-matching effect and thermal effect.  相似文献   

8.
In vivo fluorescent monitoring of physiological processes with high‐fidelity is essential in disease diagnosis and biological research, but faces extreme challenges due to aggregation‐caused quenching (ACQ) and short‐wavelength fluorescence. The development of high‐performance and long‐wavelength aggregation‐induced emission (AIE) fluorophores is in high demand for precise optical bioimaging. The chromophore quinoline‐malononitrile (QM) has recently emerged as a new class of AIE building block that possesses several notable features, such as red to near‐infrared (NIR) emission, high brightness, marked photostability, and good biocompatibility. In this minireview, we summarize some recent advances of our established AIE building block of QM, focusing on the AIE mechanism, regulation of emission wavelength and morphology, the facile scale‐up and fast preparation for AIE nanoparticles, as well as potential biomedical imaging applications.  相似文献   

9.
Optical super‐resolution techniques allow fluorescence imaging below the classical diffraction limit of light. From a technology standpoint, recent methods are approaching molecular‐scale spatial resolution. However, this remarkable achievement is not easily translated to imaging of cellular components, since current labeling approaches are limited by either large label sizes (antibodies) or the sparse availability of small and efficient binders (nanobodies, aptamers, genetically‐encoded tags). In this work, we combined recently developed Affimer reagents with site‐specific DNA modification for high‐efficiency labeling and imaging using DNA‐PAINT. We assayed our approach using an actin Affimer. The small DNA‐conjugated affinity binders could provide a solution for efficient multitarget super‐resolution imaging in the future.  相似文献   

10.
Four new water‐soluble polyglycerol‐dendronized perylene, terrylene, and quaterrylene bisimides have been synthesized and characterized with respect to their optical properties in polar organic solvents and water by using UV/Vis and fluorescence spectroscopy. All of these dyes were highly soluble in water, but the size of the chosen polyglycerol dendron was only sufficient to completely suppress dye aggregation for the core‐unsubstituted perylene derivative. Their high solubility in water and their absorption and emission wavelengths up to the NIR region make the core‐unsubstituted perylene and terrylene bisimides ideal candidates for applications in bioimaging, whilst the lack of fluorescence for quaterrylene bisimide in all polar solvents does not warrant further investigation of this chromophore in fluorescence and imaging applications. Likewise, tuning of the emission of rylene bisimides towards longer wavelengths by employing electron‐donating bay substituents is not a promising strategy, owing to the lower fluorescence quantum yields in polar solvents and, in particular, in water.  相似文献   

11.
Two novel [2+2] metallo‐assemblies based on a guanosine‐substituted terpyridine ligand ( 1 ) coordinated to palladium(II) ( 2 a ) and platinum(II) ( 2 b ) are reported. These supramolecular assemblies have been fully characterized by NMR spectroscopy, ESI mass spectrometry and elemental analyses. The palladium(II) complex ( 2 a ) has also been characterized by single crystal X‐ray diffraction studies confirming that the system is a [2+2] metallo‐rectangle in the solid state. The stabilities of these [2+2] assemblies in solution have been confirmed by DOSY studies as well as by variable temperature 1H NMR spectroscopy. The ability of these dinuclear complexes to interact with quadruplex and duplex DNA was investigated by fluorescent intercalator displacement (FID) assays, fluorescence resonance energy transfer (FRET) melting studies, and electrospray mass spectrometry (ESI‐MS). These studies have shown that both these assemblies interact selectively with quadruplex DNA (human telomeric DNA and the G‐rich promoter region of c‐myc oncogene) over duplex DNA, and are able to induce dimerization of parallel G‐quadruplex structures.  相似文献   

12.
We report a stimuli‐responsive fluorescent nanomaterial, based on graphene oxide coupled with a polymer conjugated with photochromic spiropyran (SP) dye and hydrophobic boron dipyrromethane (BODIPY) dye, for application in triggered target multicolor bioimaging. Graphene oxide (GO) was reduced by catechol‐conjugated polymers under mildly alkaline conditions, which enabled to formation of functionalized multicolor graphene nanoparticles that can be induced by irradiation with UV light and by changing the pH from acidic to neutral. Investigation of these nanoparticles by using AFM, fluorescence emission, and in vitro cell and in vivo imaging revealed that they show different tunable colors in bioimaging applications and, more specifically, in cancer‐cell detection. The stability, biocompatibility, and quenching efficacy of this nanocomposite open a different perspective for cell imaging in different independent colors, sequentially and simultaneously.  相似文献   

13.
Developing luminescent probes with long lifetime and high emission efficiency is essential for time‐resolved imaging. However, the practical applications usually suffer from emission quenching of traditional luminogens in aggregated states, or from weak emission of aggregation‐induced emission type luminogens in monomeric states. Herein, we overcome this dilemma by a rigid‐and‐flexible alternation design in donor–acceptor–donor skeletons, to achieve a thermally activated delayed fluorescence luminogen with high emission efficiency both in the monomeric state (quantum yield up to 35.3 %) and in the aggregated state (quantum yield up to 30.8 %). Such a dual‐phase strong and long‐lived emission allows a time‐resolved luminescence imaging, with an efficiency independent of probe pretreatment and probe concentration. The findings open opportunities for developing luminescent probes with a usage in larger temporal and spatial scales.  相似文献   

14.
Activatable photosensitizers (PSs) have been widely used for the simultaneous fluorescence imaging and photodynamic ablation of cancer cells. However, the ready aggregation of traditional PSs in aqueous media can lead to fluorescence quenching as well as reduced phototoxicity even in the activated form. We have developed a series of PSs that show aggregation‐enhanced emission and phototoxicity and thus the exact opposite behavior to that of previously reported PSs. We further developed a dual‐targeted enzyme‐activatable bioprobe based on the optimized photosensitizer and describe simultaneous light‐up fluorescence imaging and activated photodynamic therapy for specific cancer cells. The design of smart probes should thus open new opportunities for targeted and image‐guided photodynamic therapy.  相似文献   

15.
A prism‐based surface plasmon coupled emission (SPCE) imaging apparatus with a reverse Kretschmann (RK) configuration was developed and applied to dye‐doped polymer films. Highly polarized, directional and enhanced fluorescence images were obtained. The angular distribution of the SPCE images was in accordance with the validated theoretical calculation performed using Fresnel equation. Prism‐based SPCE imaging combined with microarray technology appears to be a promising platform for rapid and high‐throughput analysis, especially for high‐density arrays. We believe that prism‐based SPCE imaging has potential applications in biochemical research.  相似文献   

16.
Fluorescence probes in the NIR‐IIa region show drastically improved imaging owing to the reduced photon scattering and autofluorescence in biological tissues. Now, NIR‐IIa polymer dots (Pdots) are developed with a dual fluorescence enhancement mechanism. First, the aggregation induced emission of phenothiazine was used to reduce the nonradiative decay pathways of the polymers in condensed states. Second, fluorescence quenching was minimized by different levels of steric hindrance to further boost the fluorescence. The resulting Pdots displayed a fluorescence QY of ca. 1.7 % in aqueous solution, suggesting an enhancement of ca. 21 times in comparison with the original polymer in tetrahydrofuran (THF) solution. Small‐animal imaging by using the NIR‐IIa Pdots exhibited a remarkable improvement in penetration depth and signal to background ratio, as confirmed by through‐skull and through‐scalp fluorescent imaging of the cerebral vasculature of live mice.  相似文献   

17.
Controlling the emission of bright luminescent nanoparticles by a single molecular recognition event remains a challenge in the design of ultrasensitive probes for biomolecules. Herein, we developed 20‐nm light‐harvesting nanoantenna particles, built of a tailor‐made hydrophobic charged polymer poly(ethyl methacrylate‐co‐methacrylic acid), encapsulating circa 1000 strongly coupled and highly emissive rhodamine dyes with their bulky counterion. Being 87‐fold brighter than quantum dots QDots 605 in single‐particle microscopy (with 550‐nm excitation), these DNA‐functionalized nanoparticles exhibit over 50 % total FRET efficiency to a single hybridized FRET acceptor, a highly photostable dye (ATTO665), leading to circa 250‐fold signal amplification. The obtained FRET nanoprobes enable single‐molecule detection of short DNA and RNA sequences, encoding a cancer marker (survivin), and imaging single hybridization events by an epi‐fluorescence microscope with ultralow excitation irradiance close to that of ambient sunlight.  相似文献   

18.
The requirement for nitric oxide (NO) of lysosomes has motivated the development of a sophisticated fluorescent probe to monitor the distribution of this important biomolecule at the subcellular level in living cells. A near‐infrared (NIR) fluorescent Si‐rhodamine (SiRB)‐NO probe was designed based on the NO‐induced ring‐opening process of Si‐rhodamine. The probe exhibits fast chromogenic and fluorogenic responses, and high sensitivity and selectivity toward trace amounts of NO. Significantly, the spirolactam in Si‐rhodamine exhibits very good tolerance to H+, which in turn brings extremely low background fluorescence not only in the physiological environment but also under acidic conditions. The stability of the highly fluorescent product in acidic solution provides persistent fluorescence emission for long‐term imaging experiments. To achieve targeted imaging with improved spatial resolution and sensitivity, an efficient lysosome‐targeting moiety was conjugated to a SiRB‐NO probe, affording a tailored lysosome‐targeting NIR fluorescent Lyso‐SiRB‐NO probe. Inheriting the key advantages of its parent SiRB‐NO probe, Lyso‐SiRB‐NO is a functional probe that is suited for monitoring lysosomal NO with excellent lysosome compatibility. Imaging experiments demonstrated the monitoring of both exogenous and endogenous NO in real time by using the Lyso‐SiRB‐NO probe.  相似文献   

19.
When 2‐aminopurine (2AP) is substituted for adenine in DNA, it is widely accepted that its fluorescence spectrum is essentially unchanged from that of the free fluorophore. We show that 2AP in DNA exhibits long‐wavelength emission and excitation bands, in addition to the familiar short‐wavelength spectra, as a result of formation of a ground‐state heterodimer with an adjacent, π‐stacked, natural base. The observation of dual emission from 2AP in a variety of oligodeoxynucleotide duplexes and single strands demonstrates the generality of this phenomenon. The photophysical and conformational properties of the long‐wavelength‐emitting 2AP‐nucleobase dimer are examined. Analogous long‐wavelength fluorescence is seen when 2AP π‐stacks with aromatic amino acid sidechains in the active sites of methyltransferase enzymes during DNA nucleotide flipping.  相似文献   

20.
Phosphorus has been successfully fused into a classic rhodamine framework, in which it replaces the bridging oxygen atom to give a series of phosphorus‐substituted rhodamines (PRs). Because of the electron‐accepting properties of the phosphorus moiety, which is due to effective σ*–π* interactions and strengthened by the inductivity of phosphine oxide, PR exhibits extraordinary long‐wavelength fluorescence emission, elongating to the region above 700 nm, with bathochromic shifts of 140 and 40 nm relative to rhodamine and silicon‐substituted rhodamine, respectively. Other advantageous properties of the rhodamine family, including high molar extinction coefficient, considerable quantum efficiency, high water solubility, pH‐independent emission, great tolerance to photobleaching, and low cytotoxicity, stay intact in PR. Given these excellent properties, PR is desirable for NIR‐fluorescence imaging in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号