首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The stability of luminescent materials is a key factor for the practical application in white light-emitting diodes (LEDs). Poor chemical stability of narrow-band green-emitting RbLi(Li3SiO4)2:Eu2+ (RLSO:Eu2+) phosphor hinders their further commercialization even if they have excellent stability against thermal quenching. Herein, we propose an efficient protection scheme by combining the surface coating of amorphous Al2O3 and hydrophobic modification by octadecyltrimethoxysilane (ODTMS) to construct the moisture-resistant dual-shelled RLSO:Eu2+@Al2O3@ODTMS composite. The growth mechanisms of both the Al2O3 inorganic layer and the silane organic layer on the phosphor surface are investigated. The results remarkably improve the water-stability of this narrow-band green emitter. The evaluation of the white LED by employing this composite as the green component demonstrates that RLSO:Eu2+@Al2O3@ODTMS is a promising candidate for the high-performance display backlights, and this dual-shelled strategy provides an alternative method to improve the moisture-resistant property of humidity-sensitive phosphors.  相似文献   

2.
Learning from natural mineral structures is an efficient way to develop potential host lattices for applications in phosphor converted (pc)LEDs. A narrow‐band blue‐emitting silicate phosphor, RbNa3(Li3SiO4)4:Eu2+ (RNLSO:Eu2+), was derived from the UCr4C4‐type mineral model. The broad excitation spectrum (320–440 nm) indicates this phosphor can be well matched with the near ultraviolet (n‐UV) LED chip. Owing to the UCr4C4‐type highly condensed and rigid framework, RNLSO:Eu2+ exhibits an extremely small Stokes shift and an unprecedented ultra‐narrow (full‐width at half‐maximum, FWHM=22.4 nm) blue emission band (λem=471 nm) as well as excellent thermal stability (96 %@150 °C of the initial integrated intensity at 25 °C). The color gamut of the as‐fabricated (pc)LEDs is 75 % NTSC for the application in liquid crystal displays from the prototype design of an n‐UV LED chip and the narrow‐band RNLSO:Eu2+ (blue), β‐SiAlON:Eu2+ (green), and K2SiF6:Mn4+ (red) components as RGB emitters.  相似文献   

3.
Sr2SiO4:Eu3+发光材料的制备及其光谱特性   总被引:3,自引:0,他引:3  
采用溶胶-凝胶法制备了Sr2SiO4:Eu3+发光材料. 测量了Sr2SiO4:Eu3+材料的激发与发射光谱, 发射光谱主峰位于618 nm处;监测618 nm发射峰时, 所得激发光谱主峰分别为320、397、464 和518 nm. 研究了Sr2SiO4:Eu3+材料在618 nm的主发射峰强度随Eu3+浓度的变化情况. 结果显示, 随Eu3+浓度的增大, 发射峰强度先增大; 当Eu3+浓度为7%时(x), 峰值强度最大; 而后随Eu3+浓度的增大, 峰值强度减小. 在Eu3+浓度为7%的情况下, 研究了电荷补偿剂Li+的掺杂浓度(x(Li+))对Sr2SiO4:Eu3+材料发射光谱强度的影响. 结果显示, 随x(Li+)的增大, 材料发射光谱强度先增大后减小, 当x(Li+)为8%时, 峰值强度最大.  相似文献   

4.
A novel orange‐yellow‐emitting Ba3Gd(PO4)3:x Eu2+,y Mn2+ phosphor is prepared by high‐temperature solid‐state reaction. The crystal structure of Ba3Gd(PO4)3:0.005 Eu2+,0.04 Mn2+ is determined by Rietveld refinement analysis on powder X‐ray diffraction data, which shows that the cations are disordered on a single crystallographic site and the oxygen atoms are distributed over two partially occupied sites. The photoluminescence excitation spectra show that the developed phosphor has an efficient broad absorption band ranging from 230 to 420 nm, perfectly matching the characteristic emission of UV‐light emitting diode (LED) chips. The emission spectra show that the obtained phosphors possess tunable color emissions from yellowish‐green through yellow and ultimately to reddish‐orange by simply adjusting the Mn2+ content (y) in Ba3Gd(PO4)3:0.005 Eu2+,y Mn2+ host. The tunable color emissions origin from the change in intensity between the 4f–5d transitions in the Eu2+ ions and the 4T16A1 transitions of the Mn2+ ions through the energy transfer from the Eu2+ to the Mn2+ ions. In addition, the mechanism of the energy transfer between the Eu2+ and Mn2+ ions are also studied in terms of the Inokuti–Hirayama theoretical model. The present results indicate that this novel orange‐yellow‐emitting phosphor can be used as a potential candidate for the application in white LEDs.  相似文献   

5.
We report a new dicalcium silicate phosphor, Ca2?xEuxSiO4, which emits red light in response to blue‐light excitation. When excited at 450 nm, deep‐red emission at 650 nm was clearly observed in Ca1.2Eu0.8SiO4, the external and internal quantum efficiencies of which were 44 % and 50 %, respectively. The red emission from Ca2?xEuxSiO4 was strongly related to the peculiar coordination environments of Eu2+ in two types of Ca sites. The red‐emitting Ca2SiO4:Eu2+ phosphors are promising materials for next‐generation, white‐light‐emitting diode applications.  相似文献   

6.
以NH4F为助熔剂采用固相反应法合成了Eu^3+掺杂的α—Gd2(MoO4)3荧光粉。研究了引入不同含量助熔剂时对材料的结晶、荧光粉颗粒粒径、表面形貌及光谱性质的影响。实验结果表明,引入重量比为3%时样品具有好的结晶和优良的光谱性质;同时,随着助熔剂量的增加Eu^3+离子在晶体中所处的格位对称性发生了变化;另外,通过Eu^3+掺杂浓度变化的结果讨论了Eu^3+的浓度猝灭行为。光谱测量的结果表明,该荧光粉与其他商品荧光粉不同,其最有效的激发波长不在电荷迁移带范围,而是465和395nm跃迁,该荧光粉可作为近紫外LED和三基色荧光粉组合型自光器件的红色荧光粉的候选材料。  相似文献   

7.
A series of novel KBaSc2(PO4)3:Ce3+/Eu2+/Tb3+phosphors are prepared using a solid‐state reaction. X‐ray diffraction analysis and Rietveld structure refinement are used to check the phase purity and crystal structure of the prepared samples. Ce3+‐ and Eu2+‐doped phosphors both have broad excitation and emission bands, owing to the spin‐ and orbital‐allowed electron transition between the 4f and 5d energy levels. By co‐doping the KBaSc2(PO4)3:Eu2+ and KBaSc2(PO4)3:Ce3+ phosphors with Tb3+ ions, tunable colors from blue to green can be obtained. The critical distance between the Eu2+ and Tb3+ ions is calculated by a concentration quenching method and the energy‐transfer mechanism for Eu2+→Tb3+ is studied by utilizing the Inokuti–Hirayama model. In addition, the quantum efficiencies of the prepared samples are measured. The results indicate that KBaSc2(PO4)3:Eu2+,Tb3+ and KBaSc2(PO4)3:Ce3+,Tb3+ phosphors might have potential applications in UV‐excited white‐light‐emitting diodes.  相似文献   

8.
A SrLiAl3N4:Eu2+ (SLA) red phosphor prepared through a high‐pressure solid‐state reaction was coated with an organosilica layer with a thickness of 400–600 nm to improve its water resistance. The observed 4f65d→4f7 transition bands are thought to result from the existence of Eu2+ at two different Sr2+ sites. Luminescence spectra at 10 K revealed two zero‐phonon lines at 15377 (for Eu(Sr1)) and 15780 cm?1 (for Eu(Sr2)). The phosphor exhibited stable red emission under high pressure up to 312 kbar. The configurational coordinate diagram gave a theoretical explanation for the Eu2+/3+ result. The coated samples showed excellent moisture resistance while retaining an external quantum efficiency (EQE) of 70 % of their initial EQE after aging for 5 days under harsh conditions. White‐light‐emitting diodes of the SLA red phosphor and a commercial Y3Al5O12:Ce3+ yellow phosphor on a blue InGaN chip showed high color rendition (CRI=89, R9=69) and a low correlated color temperature of 2406 K.  相似文献   

9.
Searching efficient red phosphors under near‐UV or blue light excitation is practically important to improve the current white light‐emitting diodes (WLEDs). Eu2+‐ and Mn4+‐based red phosphors have been extensively studied. Here we proposed that Eu3+ is also a promising activator when it resides on a noncentrosymmetric coordination site. We proved that Cd4GdO(BO3)3 is a good host, which has a significantly distorted coordination for Eu3+. A careful crystallographic study was performed on the solid solutions of Cd4Gd1‐xEuxO(BO3)3 (0≤x≤1) by Rietveld refinements. The as‐doped Eu3+ cations locate at the Gd3+ site and are well separated by CdO8, CdO6 and BO3 groups; thus, only a slight concentration quenching was observed at ≈80 atom % Eu3+. Most importantly, the parity‐forbidden law of 4f‐4f transitions for Eu3+ are severely depressed, thus the absorptions at ≈393 and ≈465 nm are remarkable. Cd4Gd0.2Eu0.8O(BO3)3 can be pumped by a 395 nm LED chip to give a bright red emission, and when mixed with other commercial blue and green phosphors, it can emit the proper white light (0.3657, 0.3613) with a suitable Ra≈87 and correlated colour temperature ≈4326 K. In‐situ photoluminescence study indicated the low thermal quenching of these borate phosphors, especially under 465 nm excitation. Our case proves the practicability to develop near‐UV excited red phosphors in rare‐earth‐containing borates.  相似文献   

10.
Establishing an effective design principle in solid‐state materials for a blue‐light‐excited Eu2+‐doped red‐emitting oxide‐based phosphors remains one of the significant challenges for white light‐emitting diodes (WLEDs). Selective occupation of Eu2+ in inorganic polyhedra with small coordination numbers results in broad‐band red emission as a result of enhanced crystal‐field splitting of 5d levels. Rb3YSi2O7:Eu exhibits a broad emission band at λmax=622 nm under 450 nm excitation, and structural analysis and DFT calculations support the concept that Eu2+ ions preferably occupy RbO6 and YO6 polyhedra and show the characteristic red emission band of Eu2+. The excellent thermal quenching resistance, high color‐rendering index Ra (93), and low CCT (4013 K) of the WLEDs clearly demonstrate that site engineering of rare‐earth phosphors is an effective strategy to target tailored optical performance.  相似文献   

11.
LiNi0.5Mn1.5O4 is regarded as a promising cathode material to increase the energy density of lithium‐ion batteries due to the high discharge voltage (ca. 4.7 V). However, the interface between the LiNi0.5Mn1.5O4 cathode and the electrolyte is a great concern because of the decomposition of the electrolyte on the cathode surface at high operational potentials. To build a stable and functional protecting layer of Li3PO4 on LiNi0.5Mn1.5O4 to avoid direct contact between the active materials and the electrolyte is the emphasis of this study. Li3PO4‐coated LiNi0.5Mn1.5O4 is prepared by a solid‐state reaction and noncoated LiNi0.5Mn1.5O4 is prepared by the same method as a control. The materials are fully characterized by XRD, FT‐IR, and high‐resolution TEM. TEM shows that the Li3PO4 layer (<6 nm) is successfully coated on the LiNi0.5Mn1.5O4 primary particles. XRD and FT‐IR reveal that the synthesized Li3PO4‐coated LiNi0.5Mn1.5O4 has a cubic spinel structure with a space group of Fd$\bar 3$ m, whereas noncoated LiNi0.5Mn1.5O4 shows a cubic spinel structure with a space group of P4332. The electrochemical performance of the prepared materials is characterized in half and full cells. Li3PO4‐coated LiNi0.5Mn1.5O4 shows dramatically enhanced cycling performance compared with noncoated LiNi0.5Mn1.5O4.  相似文献   

12.
In this work, two rare high‐dimensional polyoxoniobates with formulas of H9[Cu(en)(H2O)2][Cu(en)2]8[Dy(H2O)4]3[Nb24‐O69(H2O)3]2 ? 36H2O ( 1 ) and H9K[Cu(en)2(H2O)]5[Cu(en)2]4‐[Eu(H2O)4]3[Nb24O69(H2O)3]2 ? 2en ? 45H2O ( 2 ) have been obtained under hydrothermal conditions. These extended materials are constructed from lanthanide‐incorporated triangular‐prism‐like polyoxoniobate secondary building units (SBUs) {[Ln(H2O)4]3[Nb24O69(H2O)3]2} (Ln=Dy, Eu). 1 and 2 represent the first examples of high‐dimensional polyoxometalate materials based on such lanthanide‐incorporated triangular‐prism‐like polyoxoniobate SBUs. Furthermore, the proton conduction property and the luminescent emission of these materials were evaluated.  相似文献   

13.
Ca10(Si2O7)3Cl2:Eu2+Mn2+单-基质白光荧光粉的发光性质   总被引:1,自引:0,他引:1  
用高温固相法合成了颜色可调的Ca10(Si2O7)3Cl2:Eu2+Mn2+荧光粉.研究了它的发光性质和Eu2+与Mn2+之间的能量传递.Eu2+离子在Ca10(Si2O7)3Cl2晶体中形成了峰值为426 nm和523 nm的5d→4f跃迁发光,Eu2+中心向Mn2+中心传递能量,敏化Mn2+离子4T1(4G)-6A1(6S)跃迁而产生585 nm的黄光发射.黄绿蓝3个发射带叠加在单一基质中实现了白光发射.3个发射带的激发谱范围位于250-480 nm处,Ca10(Si2O7)3Cl2:Eu2+Mn2+在紫外-近紫外波段(350~410 nm)范围内有很强的激发,是一种适合InGaN管芯激发的单一基质白光LED荧光粉.  相似文献   

14.
Concentration‐optimized CaSc2O4:0.2 % Ho3+/10 % Yb3+ shows stronger upconversion luminescence (UCL) than a typical concentration‐optimized upconverting phosphor Y2O3:0.2 % Ho3+/10 % Yb3+ upon excitation with a 980 nm laser diode pump. The 5F4+5S25I8 green UCL around 545 nm and 5F55I8 red UCL around 660 nm of Ho3+ are enhanced by factors of 2.6 and 1.6, respectively. On analyzing the emission spectra and decay curves of Yb3+: 2F5/22F7/2 and Ho3+: 5I65I8, respectively, in the two hosts, we reveal that Yb3+ in CaSc2O4 exhibits a larger absorption cross section at 980 nm and subsequent larger Yb3+: 2F5/2→Ho3+: 5I6 energy‐transfer coefficient (8.55×10?17 cm3 s?1) compared to that (4.63×10?17 cm3 s?1) in Y2O3, indicating that CaSc2O4:Ho3+/Yb3+ is an excellent oxide upconverting material for achieving intense UCL.  相似文献   

15.
16.
Mn4+, Ce4+ and Sm3+ doped MgAl2Si2O8‐based phosphors were synthesized at 1300 °C by solid state reaction and characterized by thermogravimetry (TG), differential thermal analysis (DTA), X‐ray powder diffraction (XRD), photoluminescence (PL), thermoluminescence (TL) and scanning electron microscopy (SEM). The phosphors showed broad red emission bands in the range of 610–715 nm and different maximum intensity when activated by UV illumination. Such a red emission can be attributed to the intrinsic 2E→4A2 transitions of Mn4+.  相似文献   

17.
采用高温固相法制备了Eu2+/Mn2+单激活和共激活的M3MgSi2O8-M2SiO4(M=Ba,Ca)两相荧光粉.通过X射线衍射(XRD)和荧光光谱(PL)对样品材料的晶体结构和光谱性能进行了表征.XRD测试结果表明所合成的样品具有M3MgSi2O8和M2SiO4两种晶相结构.PL测试显示,Eu2+在Ba3MgSi2O8-Ba2SiO4体系中发射442和502nm两个波带的光;而Eu2+在Ca2+部分取代Ba2+的BaCa2MgSi2O8-Ba1.31Ca0.69SiO4体系中发射420~520nm的连续波带,并且激发光谱向长波扩展,更加适用于被InGaN芯片(395 nm)激发.通过改变Mn2+的掺杂量可制得颜色可调的BaCa2MgSi2O8-Ba1.31Ca0.69SiO4:Eu2+,Mn2+白光荧光粉.  相似文献   

18.
李霞  许剑轶  王瑞芬  张胤 《应用化学》2011,28(12):1393-1396
通过高温固相法合成了LED用红色荧光粉Sr(1-1.5x)Mo0.8Si0.2O3.8∶Eu3+x(x=0.1,0.2,0.3,0.4,0.5)。 通过XRD、激发光谱和发射光谱测试了材料的物相组成以及发光性能。 x=0.1样品的XRD谱与JCPDS 08-0482(SrMoO4)的标准卡片相同。 Eu3+代替晶格中Sr2+的位置成为发光中心。 随着Eu3+含量x的增加,593 nm处的5D0-7F1跃迁和614 nm处的5D0-7F2跃迁发射强度会相互转换:当x≤0.4时,以磁偶极5D0-7F1跃迁为主,发射橙色光;而当x=0.5时,以电偶极5D0-7F2跃迁发射为主,发射红光。 可能是过量掺杂的Eu3+离子,只能存在于晶格空位形成缺陷,无法占据SrMoO4中Sr2+的格位中,Eu3+在晶格中占据非对称中心的格位,导致电偶极跃迁变成允许跃迁,从而增加了5D0-7F2跃迁,减弱了5D0-7F1跃迁。 因此,可以通过调节激活剂的含量获得不同发光色的荧光粉。 Eu3+掺杂的硅钼酸锶体系,614 nm激发下,在368 nm处出现宽的基质吸收峰和467 nm处7F0-5D2的跃迁峰,且这2处的吸收峰在x=0.5时比x=0.4时强3倍左右。 材料能非常好的吸收368 nm波长的光,产生颜色可调的橙红色。 与近紫外光LED芯片匹配良好。  相似文献   

19.
Mg3(BN2)N was prepared by solid state metathesis reactions and several europium (Eu2+) doped samples were prepared to discover novel red‐emitting photoluminescent (PL) materials. It turned out that the undoped and doped samples showed very broad deep‐red photoluminescence ranging from about 500 nm into the near infrared. Due to the similar spectra of the undoped and doped samples and unusually high FWHM values of about 5780 cm–1 we conclude that the luminescence process originates from defect sites. This was confirmed by decay measurements which show that the decay constants for all samples were in the range of several milliseconds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号