首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanographenes (NGs) have recently emerged as new carbon materials. Their nanoscale size results in a size-dependent quantum confinement effect, opening the band gap by a few eV. This energy gap allows NGs to be applied as optical materials. This property has attracted researchers across multiple scientific fields. The photophysical properties of NGs can be manipulated by introducing organic groups onto their basal planes and/or into their edges. In addition, the integration of organic functional groups into NGs results in NG-based hybrid materials. These features make the post-synthetic modification of NGs an active research area. As obtainable information on chemically functionalized NGs is limited owing to their nonstoichiometry and structural uncertainty, their structural characterization requires a combination of multiple spectroscopic methods. Therefore, information on the characterization procedures of recently published chemically functionalized NGs is of value for advancing the field of NG-based hybrid materials. The present review focuses on the structural characterization of chemically functionalized NGs. It is hoped that this review will help to advance this field.  相似文献   

2.
Owing to the remarkable physicochemical properties such as hydrophobicity, conductivity, elasticity, and light weight, graphene‐based materials have emerged as one of the most appealing carbon allotropes in materials science and chemical engineering. Unfortunately, pristine graphene materials lack functional groups for further modification, severely hindering their practical applications. To render graphene materials with special characters for different applications, graphene oxide or reduced graphene oxide has been functionalized with different organic agents and assembled together, via covalent binding and various noncovalent forces such as π–π interaction, electrostatic interaction, and hydrogen bonding. In this review, we briefly discuss the state‐of‐the‐art synthetic strategies and properties of organic‐functionalized graphene‐based materials, and then, present the prospective applications of organic‐functionalized graphene‐based materials in sample preparation.  相似文献   

3.
Postsynthetic modification is presented as a means to tune the hydrogen adsorption properties of a series of metal–organic frameworks (MOFs). IRMOF‐3 (isoreticular metal–organic framework), UMCM‐1‐NH2 (University of Michigan crystalline material), and DMOF‐1‐NH2 (DABCO metal–organic framework) have been covalently modified with a series of anhydrides or isocyanates and the hydrogen sorption properties have been studied. Both the storage capacities and isosteric heats of adsorption clearly show that covalent postsynthetic modification can significantly enhance the sorption affinity of MOFs with hydrogen and in some cases increase both gravimetric and volumetric uptake of the gas as much as 40 %. The significance of the present study is illustrated by: 1) the nature of the substituents introduced by postsynthetic modification result in different effects on the binding of hydrogen; 2) the covalent postsynthetic modification approach allows for systematic modulation of hydrogen sorption properties; and 3) the ease of postsynthetic modification of MOFs allows a direct evaluation of the interplay between MOF structure, hydrogen uptake, and heat of adsorption. The findings presented herein show that postsynthetic modification is a powerful method to manipulate and better understand the gas sorption properties of MOFs.  相似文献   

4.
A magnetized nano‐photocatalyst based on TiO2/magnetic graphene was developed for efficient photodegradation of crystal violet (CV). Scanning electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy and elemental mapping were used to characterize the prepared magnetic nano‐photocatalyst. The photocatalytic activity of the synthesized magnetic nano‐photocatalyst was evaluated using the decomposition of CV as a model organic pollutant under UV light irradiation. The obtained results showed that TiO2/magnetic graphene exhibited much higher photocatalytic performance than bare TiO2. Incorporation of graphene enhanced the activity of the prepared magnetic nano‐photocatalyst. TiO2/magnetic graphene can be easily separated from an aqueous solution by applying an external magnetic field. Effects of pH, magnetized nano‐photocatalyst dosage, UV light irradiation time, H2O2 amount and initial concentration of dye on the photodegradation efficiency were evaluated and optimized. Efficient photodegradation (>98%) of the selected dye under optimized conditions using the synthesized nano‐photocatalyst under UV light irradiation was achieved in 25 min. The prepared magnetic nano‐photocatalyst can be used in a wide pH range (4–10) for degradation of CV. The effects of scavengers, namely methanol (OH? scavenger), p‐benzoquinone (O2?? scavenger) and disodium ethylenediaminetetraacetate (hole scavenger), on CV photodegradation were investigated.  相似文献   

5.
6.
Hybrid 2D–2D materials composed of perpendicularly oriented covalent organic frameworks (COFs) and graphene were prepared and tested for energy storage applications. Diboronic acid molecules covalently attached to graphene oxide (GO) were used as nucleation sites for directing vertical growth of COF‐1 nanosheets (v‐COF‐GO). The hybrid material has a forest of COF‐1 nanosheets with a thickness of 3 to 15 nm in edge‐on orientation relative to GO. The reaction performed without molecular pillars resulted in uncontrollable growth of thick COF‐1 platelets parallel to the surface of GO. The v‐COF‐GO was converted into a conductive carbon material preserving the nanostructure of precursor with ultrathin porous carbon nanosheets grafted to graphene in edge‐on orientation. It was demonstrated as a high‐performance electrode material for supercapacitors. The molecular pillar approach can be used for preparation of many other 2D‐2D materials with control of their relative orientation.  相似文献   

7.
With normal organic surfactants, graphene can only be dispersed in water and cannot be dispersed in low‐boiling‐point organic solvents, which hampers its application in solution‐processed organic optoelectronic devices. Herein, we report the exfoliation of graphite into graphene in low‐boiling‐point organic solvents, for example, methanol and acetone, by using edge‐carboxylated graphene quantum dots (ECGQD) as the surfactant. The great capability of ECGQD for graphene dispersion is due to its ultralarge π‐conjugated unit that allows tight adhesion on the graphene surface through strong π–π interactions, its edge‐carboxylated structure that diminishes the steric effects of the oxygen‐containing functional groups on the basal plane of ECGQD, and its abundance of carboxylic acid groups for solubility. The graphene dispersion in methanol enables the application of graphene:ECGQD as a cathode interlayer in polymer solar cells (PSCs). Moreover, the PSC device performance of graphene:ECGQD is better than that of Ca, the state‐of‐the‐art cathode interlayer material.  相似文献   

8.
The chemical production of graphene as well as its controlled wet chemical modification is a challenge for synthetic chemists. Furthermore, the characterization of reaction products requires sophisticated analytical methods. In this Review we first describe the structure of graphene and graphene oxide and then outline the most important synthetic methods that are used for the production of these carbon‐based nanomaterials. We summarize the state‐of‐the‐art for their chemical functionalization by noncovalent and covalent approaches. We put special emphasis on the differentiation of the terms graphite, graphene, graphite oxide, and graphene oxide. An improved fundamental knowledge of the structure and the chemical properties of graphene and graphene oxide is an important prerequisite for the development of practical applications.  相似文献   

9.
Graphene‐polymer nanocomposites have significant potential in many applications such as photovoltaic devices, fuel cells, and sensors. Functionalization of graphene is an essential step in the synthesis of uniformly distributed graphene‐polymer nanocomposites, but often results in structural defects in the graphitic sp2 carbon framework. To address this issue, we synthesized graphene oxide (GO) by oxidative exfoliation of graphite and then reduced it into graphene via self‐polymerization of dopamine (DA). The simultaneous reduction of GO into graphene, and polymerization and coating of polydopamine (PDA) on the reduced graphene oxide (RGO) surface were confirmed with XRD, UV–Vis, XPS, Raman, TGA, and FTIR. The degree of reduction of GO increased with increasing DA/GO ratio from 1/4 to 4/1 and/or with increasing temperature from room temperature to 60 °C. A RAFT agent, 2‐(dodecylthiocarbonothioylthio)?2‐methylpropionic acid, was linked onto the surface of the PDA/RGO, with a higher equivalence of RAFT agent in the reaction leading to a higher concentration of RAFT sites on the surface. Graphene‐poly(methyl methacrylate), graphene‐poly(tert‐butyl acrylate), and graphene‐poly(N‐isopropylacrylamide) nanocomposites were synthesized via RAFT polymerization, showing their characteristic solubility in several different solvents. This novel synthetic route was found facile and can be readily used for the rational design of graphene‐polymer nanocomposites, promoting their applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3941–3949  相似文献   

10.
Processable films of metal–organic frameworks (MOFs) have been long sought to advance the application of MOFs in various technologies from separations to catalysis. Herein, MOF–polymer mixed‐matrix membranes (MMMs) are described, formed on several substrates using a wide variety of MOF materials. These MMMs can be delaminated from their substrates to create free‐standing MMMs that are mechanically stable and pliable. The MOFs in these MMMs remain highly crystalline, porous, and accessible for further chemical modification through postsynthetic modification (PSM) and postsynthetic exchange (PSE) processes. Overall, the findings here demonstrate a versatile approach to preparing stable functional MMMs that should contribute significantly to the advancement of these materials.  相似文献   

11.
Third‐generation solar cells are understood to be the pathway to overcoming the issues and drawbacks of the existing solar cell technologies. Since the introduction of graphene in solar cells, it has been providing attractive properties for the next generation of solar cells. Currently, there are more theoretical predictions rather than practical recognitions in third‐generation solar cells. Some of the potential of graphene has been explored in organic photovoltaics (OPVs) and dye‐sensitized solar cells (DSSCs), but it has yet to be fully comprehended in the recent third‐generation inorganic–organic hybrid perovskite solar cells. In this review, the diverse role of graphene in third‐generation OPVs and DSSCs will be deliberated to provide an insight on the prospects and challenges of graphene in inorganic–organic hybrid perovskite solar cells.  相似文献   

12.
Graphene is the best‐studied 2D material available. However, its production is still challenging and the quality depends on the preparation procedure. Now, more than a decade after the outstanding experiments conducted on graphene, the most successful wet‐chemical approach to graphene and functionalized graphene is based on the oxidation of graphite. Graphene oxide has been known for more than a century; however, the structure bears variable large amounts of lattice defects that render the development of a controlled chemistry impossible. The controlled oxo‐functionalization of graphene avoids the formation of defects within the σ‐framework of carbon atoms, making the synthesis of specific molecular architectures possible. The scope of this review is to introduce the field of oxo‐functionalizing graphene. In particular, the differences between GO and oxo‐functionalized graphene are described in detail. Moreover analytical methods that allow determining lattice defects and functional groups are introduced followed by summarizing the current state of controlled oxo‐functionalization of graphene.  相似文献   

13.
We report herein the engineering of the surface/interface properties of graphene oxide (GO) films by controllable photoreduction treatment. In our recent works, typical photoreduction processes, including femtosecond laser direct writing (FsLDW), laser holographic lithography, and controllable UV irradiation, have been employed to make conductive reduced graphene oxide (RGO) microcircuits, hierarchical RGO micro‐nanostructures with both superhydrophobicity and structural color, as well as moisture‐responsive GO/RGO bilayer structures. Compared with other reduction protocols, for instance, chemical reduction and thermal annealing, the photoreduction strategy shows distinct advantages, such as mask‐free patterning, chemical‐free modification, controllable reduction degree, and environmentally friendly processing. These works indicate that the surface and interface engineering of GO through controllable photoreduction of GO holds great promise for the development of various graphene‐based microdevices.  相似文献   

14.
树脂基复合材料具有比强度高、比模量大、耐高温、耐腐蚀、质轻等诸多优点,在航天军工、生物医疗、电子封装、体育器材等众多领域得到广泛应用。石墨烯作为一种典型的二维纳米材料,凭借其独特结构以及优异的物理化学性能而备受关注。近年来的研究表明石墨烯可以通过对增强纤维改性和对基体树脂改性的方法来提高树脂基复合材料的力学性能。本文介绍了石墨烯改性树脂基复合材料的增强增韧机理,对石墨烯改性纤维(碳纤维、玻璃纤维、芳纶纤维)增强复合材料以及树脂的改性方法进行了综述;着重阐述了石墨烯改性树脂基复合材料力学性能的研究进展,分析了石墨烯改性树脂基复合材料研究中依旧存在的两大问题,即石墨烯的分散性和界面结合问题,并对石墨烯改性树脂基复合材料的未来发展前景进行了展望。  相似文献   

15.
This work is the first presentation of the synthesis of few‐layer graphene decorated with gold and silver nanoparticles (Gr–Au–Ag) by chemical vapor deposition over a catalytic system formed of bimetallic Au–Ag nanoclusters supported on MgO and with methane used as the source of carbon. The sheetlike morphology of the graphene nanostructures, with mean sizes in the range of hundreds of nanometers, was observed by high‐resolution electron microscopy. The distinctive feature found in all the samples was the regular rectangular or square shapes. This multi‐component organic–inorganic nanomaterial was used to modify a platinum substrate and subsequently employed for the detection of carbamazepine, an anti‐convulsion drug. UV/Vis spectroscopy revealed that a strong hypochromism occurred over time, after mixing solutions of graphene–Au–Ag with carbamazepine. This can be attributed to π–π stacking between the aromatic groups of the two compounds. Linear sweep voltammetry (LCV) provided evidence that the modified platinum substrate presented a significant electrocatalytic reaction toward the oxidation of carbamazepine. The intensity of the current was found to increase by up to 2.5 times, and the oxidation potential shifted from +1.5 to +1.35 V(Ag/AgCl) in comparison with the unmodified electrode. Electrochemical impedance spectroscopy (EIS) was further used to thoroughly assess the activity of the platinum electrode that was modified by the deposition of the Gr‐Au‐Ag composites in the presence of various concentrations of carbamazepine. The experimental EIS records were used for the generation of an equivalent electrical circuit, based on the charge‐transfer resistance (Rct), Warburg impedance (ZD), solution resistance (Rs), and a constant phase element (CPE) that characterizes the non‐ideal interface capacitive responses.  相似文献   

16.
A copper iminopyridine complex has been immobilized on to a metal–organic framework (MOF) through postsynthetic modification of IRMOF‐3. The modified MOFs were fully demonstrated by using a variety of methods, and the structural integrity of the modified MOFs has been confirmed by powder X‐ray diffraction (XRD). Furthermore, it was shown that the modified IRMOF‐3 can act as an efficient solid catalyst for the synthesis of 2‐aminobenzothiazoles via the reaction of 2‐iodoanilines with isothiocyanates in a heterogeneous manner. Moreover, the catalyst could be facilely separated from the reaction mixture and reused for six consecutive cycles without significant degradation in catalytic activity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Computational studies have often been carried out on hydrogen-terminated nanographenes (NGs). These structures are, however, far from those deduced from experimental observations, which have suggested armchair edges with two carboxy groups on the edges as dominant. We conducted computational studies on NGs consisting of C42, C60, C78, C96, C142, and C174 carbon atoms with hydrogen, carboxy, and N-methyl imide-terminated armchair edges. DFT calculations inform distorted basal planes and similar HOMO-LUMO gaps, indicating that the edge oxidation and functionalization do not very influence the electronic structure. Comparison of observed UV-vis spectra of carboxy- and N-octadecyl chain terminated NGs with calculated spectra of model NGs informs the contribution of π-π* transitions on the basal plane to the absorptions in the visible region. A dimeric structure of NG and octadecyl-installed NG demonstrate that both the distorted basal planes and the steric contacts among the functional groups widen the surface-to-surface distance thereby allowing the invasion of solvent molecules between the surfaces. This picture is consistent with the improved solubility of edge-modified NGs.  相似文献   

18.
Nanogels (NGs) are 3‐dimensional (3D) networks composed of hydrophilic or amphiphilic polymer chains, allowing for effective and homogeneous encapsulation of drugs, genes, or imaging agents for biomedical applications. Polyethylenimine (PEI), possessing abundant positively charged amine groups, is an ideal platform for the development of NGs. A variety of effective PEI‐based NGs have been designed and much effort has been devoted to study the relationship between the structure and function of the NGs. In particular, PEI‐based NGs can be prepared either using PEI as the major NG component or using PEI as a crosslinker. This review reports the recent progresses in the design of PEI‐based NGs for gene and drug delivery and for bioimaging applications with a target focus to tackle the diagnosis and therapy of cancer.  相似文献   

19.
Chemical modification of graphene quantum dots (GQDs) can influence their physical and chemical properties; hence, the investigation of the effect of organic functional groups on GQDs is of importance for developing GQD–organic hybrid materials. Three peripherally functionalised GQDs having a third‐generation dendritic wedge (GQD‐ 2 ), long alkyl chains (GQD‐ 3 ) and a polyhedral oligomeric silsesquioxane group (GQD‐ 4 ) were prepared by the CuI‐catalysed Huisgen cycloaddition reaction of GQD‐ 1 with organic azides. Cyclic voltammetry indicated that reduction occurred on the surfaces of GQD‐ 1 – 4 and on the five‐membered imide rings at the periphery, and this suggested that the functional groups distort the periphery by steric interactions between neighbouring functional groups. The HOMO–LUMO bandgaps of GQD‐ 1 – 4 were estimated to be approximately 2 eV, and their low‐lying LUMO levels (<?3.9 eV) were lower than that of phenyl‐C61‐butyric acid methyl ester, an n‐type organic semiconductor. The solubility of GQD‐ 1 – 4 in organic solvents depends on the functional groups present. The functional groups likely cover the surfaces and periphery of the GQDs, and thus increase their affinity for solvent and avoid precipitation. Similar to GQD‐ 2 , both GQD‐ 3 and GQD‐ 4 emitted white light upon excitation at 360 nm. Size‐exclusion chromatography demonstrated that white‐light emission originates from the coexistence of differently sized GQDs that have different photoluminescence emission wavelengths.  相似文献   

20.
In the light of recent experimental research on the oxygen reduction reaction (ORR) with carbon materials doped with foreign atoms, we study the performance of graphene with different defects on this catalytic reaction. In addition to the reported N‐graphene, it is found that H‐decorated and B‐substituted graphene can also spontaneously promote this chemical reaction. The local high spin density plays the key role, facilitating the adsorption of oxygen and OOH, which is the start of ORR. The source of the high spin density for all of the doped graphene is attributed to unpaired single π electrons. Meanwhile, the newly formed C? H covalent bond introduces a higher barrier to the p electron flow, leading to more localized and higher spin density for H‐decorated graphene. At the same time, larger structural distortion should be avoided, which could impair the induced spin density, such as for P‐substituted graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号