首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Active and highly stable oxide‐supported IrNiOx core–shell catalysts for electrochemical water splitting are presented. IrNix@IrOx nanoparticles supported on high‐surface‐area mesoporous antimony‐doped tin oxide (IrNiOx /Meso‐ATO) were synthesized from bimetallic IrNix precursor alloys (PA‐IrNix /Meso‐ATO) using electrochemical Ni leaching and concomitant Ir oxidation. Special emphasis was placed on Ni/NiO surface segregation under thermal treatment of the PA‐IrNix /Meso‐ATO as well as on the surface chemical state of the particle/oxide support interface. Combining a wide array of characterization methods, we uncovered the detrimental effect of segregated NiO phases on the water splitting activity of core–shell particles. The core–shell IrNiOx /Meso‐ATO catalyst displayed high water‐splitting activity and unprecedented stability in acidic electrolyte providing substantial progress in the development of PEM electrolyzer anode catalysts with drastically reduced Ir loading and significantly enhanced durability.  相似文献   

2.
Active and highly stable oxide‐supported IrNiOx core–shell catalysts for electrochemical water splitting are presented. IrNix@IrOx nanoparticles supported on high‐surface‐area mesoporous antimony‐doped tin oxide (IrNiOx /Meso‐ATO) were synthesized from bimetallic IrNix precursor alloys (PA‐IrNix /Meso‐ATO) using electrochemical Ni leaching and concomitant Ir oxidation. Special emphasis was placed on Ni/NiO surface segregation under thermal treatment of the PA‐IrNix /Meso‐ATO as well as on the surface chemical state of the particle/oxide support interface. Combining a wide array of characterization methods, we uncovered the detrimental effect of segregated NiO phases on the water splitting activity of core–shell particles. The core–shell IrNiOx /Meso‐ATO catalyst displayed high water‐splitting activity and unprecedented stability in acidic electrolyte providing substantial progress in the development of PEM electrolyzer anode catalysts with drastically reduced Ir loading and significantly enhanced durability.  相似文献   

3.
Crystalline solid materials are platforms for the development of effective catalysts and have shown vast benefits at the frontiers between homogeneous and heterogeneous catalysts. Typically, these crystalline solid catalysts outperformed their homogeneous analogs due to their high stability, selectivity, better catalytic activity, reusability and recyclability in catalysis applications. This point of view, comprising significant features of a new class of porous crystalline materials termed as metal‐organic frameworks (MOFs) engendered the attractive pathway to synthesize functionalized heterogeneous MOF catalysts. The present review includes the recent research progress in developing both hydrogen‐bond donating (HBD) MOF catalysts and MOF‐supported single‐site catalysts (MSSCs). The first part deals with the novel designs of urea‐, thiourea‐ and squaramide‐containing MOF catalysts and study of their crucial role in HBD catalysis. In the second part, we discuss the important classification of MSSCs with existing examples and their use in desired catalytic reactions. In addition, we describe the relative catalytic efficiency of these MSSCs with their homogeneous and similarly reported analogs. The precise knowledge of discussed heterogeneous MOF catalysts in this review may open the door for new research advances in the field of MOF catalysis.  相似文献   

4.
综述了用于燃料电池中氧还原反应(ORR)的石墨烯衍生物负载的各种纳米催化剂的最新进展。介绍了用于表征石墨烯基电催化剂的常规电化学技术以及石墨烯基电催化剂最新的研究进展。负载于还原氧化石墨烯(RGO)上的Pt催化剂的电化学活性和稳定性均得到显著提高。其它贵金属催化剂,如Pd, Au和Ag也表现出较高的催化活性。当以RGO或少层石墨烯为载体时, Pd催化剂的稳定性提高。讨论了氧化石墨烯负载Au或Ag催化剂的合成方法。另外,以N4螯合络合物形式存在的非贵过渡金属可降低氧的电化学性能。 Fe和Co是可替代的廉价ORR催化剂。在大多数情况下,这些催化剂稳定性和耐受性的问题均可得到解决,但其整体性能还很难超越Pt/C催化剂。  相似文献   

5.
《化学:亚洲杂志》2018,13(18):2714-2722
Currently, the base‐free aerobic oxidation of biomass‐derived 5‐hydroxymethylfurfural (HMF) to produce 2,5‐furandicarboxylic acid (FDCA) is attracting intense interest due to its prospects for the green, sustainable, and promising production of biomass‐based aromatic polymers. Herein, we have developed a new Pt catalyst supported on nitrogen‐doped‐carbon‐decorated CeO2 (NC‐CeO2) for the aerobic oxidation of HMF in water without the addition of any homogeneous base. It was demonstrated that the small‐sized Pt particles could be well dispersed on the surface of the hybrid NC‐CeO2 support, and the activity of the supported Pt catalyst depended strongly on the surface structure and properties of the catalysts. The as‐fabricated Pt/NC‐CeO2 catalyst, with abundant surface defects, enhanced basicity, and favorable electron‐deficient metallic Pt species, enabled an almost 100 % yield of FDCA in water with molecular oxygen (0.4 MPa) at 110 °C for 8 h without the addition of any homogeneous base, which is indicative of exceptional catalytic performance. Furthermore, this Pt/NC‐CeO2 catalyst also showed good stability and reusability owing to strong metal–support interactions. An understanding of the role of surface structural defects and basicity of the hybrid NC‐CeO2 support provides a basis for the rational design of high‐performance and stable supported metal catalysts with practical applications in various transformations of biomass‐derived compounds.  相似文献   

6.
The high cost and scarcity of noble metal catalysts, such as Pt, have hindered the hydrogen production from electrochemical water splitting, the oxygen reduction in fuel cells and batteries. Herein, we developed a simple template‐free approach to three‐dimensional porous carbon networks codoped with nitrogen and phosphorus by pyrolysis of a supermolecular aggregate of self‐assembled melamine, phytic acid, and graphene oxide (MPSA/GO). The pyrolyzed MPSA/GO acted as the first metal‐free bifunctional catalyst with high activities for both oxygen reduction and hydrogen evolution. Zn–air batteries with the pyrolyzed MPSA/GO air electrode showed a high peak power density (310 W g?1) and an excellent durability. Thus, the pyrolyzed MPSA/GO is a promising bifunctional catalyst for renewable energy technologies, particularly regenerative fuel cells.  相似文献   

7.
Introducing sulfur into the surface of molybdenum phosphide (MoP) produces a molybdenum phosphosulfide (MoP|S) catalyst with superb activity and stability for the hydrogen evolution reaction (HER) in acidic environments. The MoP|S catalyst reported herein exhibits one of the highest HER activities of any non‐noble‐metal electrocatalyst investigated in strong acid, while remaining perfectly stable in accelerated durability testing. Whereas mixed‐metal alloy catalysts are well‐known, MoP|S represents a more uncommon mixed‐anion catalyst where synergistic effects between sulfur and phosphorus produce a high‐surface‐area electrode that is more active than those based on either the pure sulfide or the pure phosphide. The extraordinarily high activity and stability of this catalyst open up avenues to replace platinum in technologies relevant to renewable energies, such as proton exchange membrane (PEM) electrolyzers and solar photoelectrochemical (PEC) water‐splitting cells.  相似文献   

8.
Introducing sulfur into the surface of molybdenum phosphide (MoP) produces a molybdenum phosphosulfide (MoP|S) catalyst with superb activity and stability for the hydrogen evolution reaction (HER) in acidic environments. The MoP|S catalyst reported herein exhibits one of the highest HER activities of any non‐noble‐metal electrocatalyst investigated in strong acid, while remaining perfectly stable in accelerated durability testing. Whereas mixed‐metal alloy catalysts are well‐known, MoP|S represents a more uncommon mixed‐anion catalyst where synergistic effects between sulfur and phosphorus produce a high‐surface‐area electrode that is more active than those based on either the pure sulfide or the pure phosphide. The extraordinarily high activity and stability of this catalyst open up avenues to replace platinum in technologies relevant to renewable energies, such as proton exchange membrane (PEM) electrolyzers and solar photoelectrochemical (PEC) water‐splitting cells.  相似文献   

9.
Novel guanidinium ionic liquid‐grafted rigid poly(p‐phenylene) (PPPIL) microspheres have been developed for metal scavenging and catalysis. The noble‐metal nanoparticles supported on the microspheres surface can be used as efficient heterogeneous catalysts. The combination of nanoparticles and ionic liquid fragments on the microsphere surfaces enhance the activity and durability of the catalyst. The PPPIL ? Pd0 catalyst has been tested in the Suzuki cross‐coupling reaction, and exhibits much higher catalytic activity than Pd catalysts supported on porous polymer matrices. The PPPIL ? Pd0 catalyst can be recycled at least for nine runs without any significant loss of activity. The present approach may, therefore, have potential applications in transition‐metal‐nanocatalyzed reactions.  相似文献   

10.
High‐performance non‐noble electrocatalysts for oxygen reduction reaction (ORR) are the prerequisite for large‐scale utilization of fuel cells. Herein, a type of sandwiched‐like non‐noble electrocatalyst with highly dispersed FeNx active sites embedded in a hierarchically porous carbon/graphene heterostructure was fabricated using a bottom‐up strategy. The in situ ion substitution of Fe3+ in a nitrogen‐containing MOF (ZIF‐8) allows the Fe‐heteroatoms to be uniformly distributed in the MOF precursor, and the assembly of Fe‐doped ZIF‐8 nano‐crystals with graphene‐oxide and in situ reduction of graphene‐oxide afford a sandwiched‐like Fe‐doped ZIF‐8/graphene heterostructure. This type of heterostructure enables simultaneous optimization of FeNx active sites, architecture and interface properties for obtaining an electron‐catalyst after a one‐step carbonization. The synergistic effect of these factors render the resulting catalysts with excellent ORR activities. The half‐wave potential of 0.88 V vs. RHE outperforms most of the none‐noble metal catalyst and is comparable with the commercial Pt/C (20 wt %) catalyst. Apart from the high activity, this catalyst exhibits excellent durability and good methanol‐tolerance. Detailed investigations demonstrate that a moderate content of Fe dopants can effectively increase the intrinsic activities, and the hybridization of graphene can enhance the reaction kinetics of ORR. The strategy proposed in this work gives an inspiration towards developing efficient noble‐metal‐free electrocatalysts for ORR.  相似文献   

11.
In this work, we prepared high‐performance and recyclable nanocatalysts that consist of small and well‐dispersed silver nanoparticles (Ag NPs) immobilized onto Cu‐ based metal–organic framework (MOF‐199 s) supported by carboxymethylated cellulose fibers (CCFs). The as‐prepared green nanohybrid catalysts, namely Ag NPs@ MOF‐199 s/CCFs, were characterized using SEM, TEM, XRD and FT‐IR techniques. The catalytic performances showed that Ag NPs@ MOF‐199 s/CCFs catalysts exhibited a very high catalytic efficiency towards the reduction of 4‐nitrophenol to 4‐aminophenol. The enhanced catalytic performances are attributed to the improved dispersity, small particles of Ag NPs stabilized by the MOF‐199 s, and the porous catalyst structures. The introduction of cellulose fiber further facilitates the reuse and sustainability of the nanohybrid catalysts, showing a stable and high reusability (more than 91% of catalytic activity) even after five runs.  相似文献   

12.
The synthesis of single‐atom catalysts and the control of the electronic properties of catalytic sites to arrive at superior catalysts is a major challenge in heterogeneous catalysis. A stable supported single‐atom silver catalyst with a controllable electronic state was obtained by anti‐Ostwald ripening. An electronic perturbation of the catalytic sites that is induced by a subtle change in the structure of the support has a strong influence on the intrinsic reactivity. The higher depletion of the 4d electronic state of the silver atoms causes stronger electronic metal–support interactions, which leads to easier reducibility and higher catalytic activity. These results may improve our understanding of the nature of electronic metal–support interactions and lead to structure–activity correlations.  相似文献   

13.
Single‐atom catalysts have drawn great attention, especially in electrocatalysis. However, most of previous works focus on the enhanced catalytic properties via improving metal loading. Engineering morphologies of catalysts to facilitate mass transport through catalyst layers, thus increasing the utilization of each active site, is regarded as an appealing way for enhanced performance. Herein, we design an overhang‐eave structure decorated with isolated single‐atom iron sites via a silica‐mediated MOF‐templated approach for oxygen reduction reaction (ORR) catalysis. This catalyst demonstrates superior ORR performance in both alkaline and acidic electrolytes, comparable to the state‐of‐the‐art Pt/C catalyst and superior to most precious‐metal‐free catalysts reported to date. This activity originates from its edge‐rich structure, having more three‐phase boundaries with enhanced mass transport of reactants to accessible single‐atom iron sites (increasing the utilization of active sites), which verifies the practicability of such a synthetic approach.  相似文献   

14.
Iron is the cheapest and one of the most abundant transition metals. Natural [FeFe]‐hydrogenases exhibit remarkably high activity in hydrogen evolution, but they suffer from high oxygen sensitivity and difficulty in scale‐up. Herein, an FeP nanowire array was developed on Ti plate (FeP NA/Ti) from its β‐FeOOH NA/Ti precursor through a low‐temperature phosphidation reaction. When applied as self‐supported 3D hydrogen evolution cathode, the FeP NA/Ti electrode shows exceptionally high catalytic activity and good durability, and it only requires overpotentials of 55 and 127 mV to afford current densities of 10 and 100 mA cm2, respectively. The excellent electrocatalytic performance is promising for applications as non‐noble‐metal HER catalyst with a high performance–price ratio in electrochemical water splitting for large‐scale hydrogen fuel production.  相似文献   

15.
Reducing the noble-metal catalyst content of acid Polymer Electrolyte Membrane (PEM) water electrolyzers without compromising catalytic activity and stability is a goal of fundamental scientific interest and substantial technical importance for cost-effective hydrogen-based energy storage. This study presents nanostructured iridium nanodendrites (Ir-ND) supported on antimony doped tin oxide (ATO) as efficient and stable water splitting catalysts for PEM electrolyzers. The active Ir-ND structures exhibited superior structural and morphological properties, such as particle size and surface area compared to commercial state-of-art Ir catalysts. Supported on tailored corrosion-stable conductive oxides, the Ir-ND catalysts exhibited a more than 2-fold larger kinetic water splitting activity compared with supported Ir nanoparticles, and a more than 8-fold larger catalytic activity than commercial Ir blacks. In single-cell PEM electrolyzer tests, the Ir-ND/ATO outperformed commercial Ir catalysts more than 2-fold at technological current densities of 1.5 A cm–2 at a mere 1.80 V cell voltage, while showing excellent durability under constant current conditions. We conclude that Ir-ND/ATO catalysts have the potential to substantially reduce the required noble metal loading, while maintaining their catalytic performance, both in idealized three-electrode set ups and in the real electrolyzer device environments.  相似文献   

16.
Nickel phosphide is an emerging low‐cost, earth‐abundant catalyst that can efficiently reduce water to generate hydrogen. However, the synthesis of nickel phosphide catalysts usually involves multiple steps and is laborious. Herein, a convenient and straightforward approach to the synthesis of a three‐dimensional (3D) self‐supported biphasic Ni5P4‐Ni2P nanosheet (NS) array cathode is presented, which is obtained by direct phosphorization of commercially available nickel foam using phosphorus vapor. The synthesized 3D Ni5P4‐Ni2P‐NS array cathode exhibits outstanding electrocatalytic activity and long‐term durability toward the hydrogen evolution reaction (HER) in acidic medium. The fabrication procedure reported here is scalable, showing substantial promise for use in water electrolysis. More importantly, the approach can be readily extended to synthesize other self‐supported transition metal phosphide HER cathodes.  相似文献   

17.
A tremendous effort has been provided in last two decades to develop efficient transition metal–based heterogeneous catalysts for the electrochemical water oxidation. Several approaches such as composition modulation, heteroatom doping, morphological development, particle size tuning, surface area enhancement, and control over electronic structure have been explored for the designing of the materials with improved water oxidation activity. As the electrochemical process is a surface phenomenon, surface structure plays a crucial role in controlling the water oxidation activity. Rational engineering of the catalyst surface by composition modulation, crystal facet tuning, and generating functional overlayer has been reported to enhance the water oxidation activity. Heteroatom doping, cationic and anionic deficiencies, and ultrathin 2D morphology are also found to promote electrochemical performance. In addition, engineering in the interface provides intrinsic improvement of the catalytic activity and stability for the electrochemical water oxidation. Although, surface and interface engineering of the catalyst has come out as the major factors in the electrochemical water oxidation, no dedicated review is available in this field. In this review, we have described the strategies of improving water oxidation activity of the catalysts by surface and interface engineering. The progress in this field discussed in detail; the challenges have been identified and addressed to attain a clear understanding in this field.  相似文献   

18.
The size effect of transition‐metal nanoparticles on electrocatalytic performance remains ambiguous especially when decreasing the size to the atomic level. Herein, we report the spatial isolation of cobalt species on the atomic scale, which was achieved by tuning the zinc dopant content in predesigned bimetallic Zn/Co zeolitic imidazole frameworks (ZnCo‐ZIFs), and led to the synthesis of nanoparticles, atomic clusters, and single atoms of Co catalysts on N‐doped porous carbon. This synthetic strategy allowed an investigation of the size effect on electrochemical behavior from nanometer to Ångström dimensions. Single‐atom Co catalysts showed superior bifunctional ORR/OER activity, durability, and reversibility in Zn–air batteries compared with the other derivatives and noble‐metal Pt/C+RuO2, which was attributed to the high reactivity and stability of isolated single Co atoms. Our findings open up a new avenue to regulate the metal particle size and catalytic performance of MOF derivatives.  相似文献   

19.
The size effect of transition‐metal nanoparticles on electrocatalytic performance remains ambiguous especially when decreasing the size to the atomic level. Herein, we report the spatial isolation of cobalt species on the atomic scale, which was achieved by tuning the zinc dopant content in predesigned bimetallic Zn/Co zeolitic imidazole frameworks (ZnCo‐ZIFs), and led to the synthesis of nanoparticles, atomic clusters, and single atoms of Co catalysts on N‐doped porous carbon. This synthetic strategy allowed an investigation of the size effect on electrochemical behavior from nanometer to Ångström dimensions. Single‐atom Co catalysts showed superior bifunctional ORR/OER activity, durability, and reversibility in Zn–air batteries compared with the other derivatives and noble‐metal Pt/C+RuO2, which was attributed to the high reactivity and stability of isolated single Co atoms. Our findings open up a new avenue to regulate the metal particle size and catalytic performance of MOF derivatives.  相似文献   

20.
Developing high-performance catalysts for oxygen reduction reaction to replace costly platinum-based materials is of great importance but still confronted with challenges. Herein, a kind of supported palladium liquid metal catalyst, which is prepared by galvanic replacement, surpasses commercial Pt/C and Pd/C in oxygen reduction catalysis with a higher half-wave potential of 0.92 V, mass activity of 1.85 A/mgPd at 0.90 V, and superior durability. The liquid metal support can both optimize the electronic structures of Pd sites and guarantee the dispersion of Pd atoms, which explains the enhanced activity and durability, respectively. This work opens an avenue for rational design of catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号