共查询到20条相似文献,搜索用时 15 毫秒
1.
Kevin M. Holder Benjamin R. Spears Molly E. Huff Morgan A. Priolo Eva Harth Jaime C. Grunlan 《Macromolecular rapid communications》2014,35(10):960-964
Super gas barrier nanocoatings are recently demonstrated by combining polyelectrolytes and clay nanoplatelets with layer‐by‐layer deposition. These nanobrick wall thin films match or exceed the gas barrier of SiOx and metallized films, but they are relatively stiff and lose barrier with significant stretching (≥10% strain). In an effort to impart stretchability, hydrogen‐bonding polyglycidol (PGD) layers are added to an electrostatically bonded thin film assembly of polyethylenimine (PEI) and montmorillonite (MMT) clay. The oxygen transmission rate of a 125‐nm thick PEI‐MMT film increases more than 40x after being stretched 10%, while PGD‐PEI‐MMT trilayers of the same thickness maintain its gas barrier. This stretchable trilayer system has an OTR three times lower than the PEI‐MMT bilayer system after stretching. This report marks the first stretchable high gas barrier thin film, which is potentially useful for applications that require pressurized elastomers.
2.
《Macromolecular rapid communications》2017,38(17)
In this study, a new type of functional, self‐assembled nanostructure formed from porphyrins and polyamidoamine dendrimers based on hydrogen bonding in an aqueous solution is presented. As the aggregates formed are promising candidates for solar‐energy conversion, their photocatalytic activity is tested using the model reaction of methyl viologen reduction. The self‐assembled structures show significantly increased activity as compared to unassociated porphyrins. Details of interaction forces driving the supramolecular structure formation and regulating catalytic efficiency are fundamentally discussed.
3.
Utilizing pure amine hydrogen bonding is a novel approach for constructing two‐dimensional (2D) networks. Further, such systems are capable of undergoing structural modifications due to changes in pH. In this study, we designed a 2D network of triaminobenzene (TAB) molecules that by varying the pH from neutral to acidic, form either ordered or disordered structures on Au(111) surface as revealed in scanning tunneling microscopy images. In near‐neutral solution (pH ≈5.5), protonation of TAB generates charged species capable of forming H‐bonds between amine groups of neighboring molecules resulting in the formation of a 2D supramolecular structure on the electrified surface. At lower pH, due to the protonation of the amine groups, intermolecular hydrogen bonding is no longer possible and no ordered structure is observed on the surface. This opens the possibility to employ pH as a chemical trigger to induce a phase transition in the 2D molecular network of triaminobenzene molecules. 相似文献
4.
5.
Joanna P.‐W. Wong Dr. Adrian C. Whitwood Prof.Dr. Duncan W. Bruce 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(50):16073-16089
48 new hydrogen‐bonded complexes have been prepared by combining 16 fluorophenols of general formula C6FnH5?nOH with three different alkoxystilbazoles (butyloxy‐, octyloxy‐ and dodecyloxy‐). Single‐crystal X‐ray structures were obtained for 10 of the 16 complexes of octyloxystilbazole from which it was found that most of the structures could be collected into one of two groups according to both the motif shown by the complex and by the solid‐state packing. Because all but one crystallised in the P$\bar 1$ space group, meaningful comparisons could be drawn and it was observed that six structures were extremely close in nature so that significant molecular overlap was found. On this basis, doubt is cast on the significance of some of the weaker intermolecular contacts found in the solid state. 40 of the new complexes showed liquid‐crystal properties and it was found that although complexes of butyloxystilbazole were all nematic, almost all of those with dodecyloxystilbazole showed a smectic A (SmA) phase. Complexes of octyloxystilbazole showed a mixture of both. Structure/property correlations showed that clearing points were independent of the pKa of the phenol. The most stable mesophases were found when the fluorophenol contained a fluorine at the 2‐position, which was interpreted in terms of the formation of an intramolecular H???F hydrogen bond to give a six‐membered ring linking the two components into a stable, coplanar conformation. The least stable mesophases were found when no such ring formation was possible and the phenol was relatively free to move. 相似文献
6.
7.
Halogen‐ and Hydrogen‐Bonded Salts and Co‐crystals Formed from 4‐Halo‐2,3,5,6‐tetrafluorophenol and Cyclic Secondary and Tertiary Amines: Orthogonal and Non‐orthogonal Halogen and Hydrogen Bonding,and Synthetic Analogues of Halogen‐Bonded Biological Systems 下载免费PDF全文
Akihiro Takemura Linda J. McAllister Sam Hart Natalie E. Pridmore Dr. Peter B. Karadakov Dr. Adrian C. Whitwood Prof. Dr. Duncan W. Bruce 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(22):6721-6732
Co‐crystallisation of, in particular, 4‐iodotetrafluorophenol with a series of secondary and tertiary cyclic amines results in deprotonation of the phenol and formation of the corresponding ammonium phenate. Careful examination of the X‐ray single‐crystal structures shows that the phenate anion develops a C?O double bond and that the C?C bond lengths in the ring suggest a Meissenheimer‐like delocalisation. This delocalisation is supported by the geometry of the phenate anion optimised at the MP2(Full) level of theory within the aug‐cc‐pVDZ basis (aug‐cc‐pVDZ‐PP on I) and by natural bond orbital (NBO) analyses. With sp2 hybridisation at the phenate oxygen atom, there is strong preference for the formation of two non‐covalent interactions with the oxygen sp2 lone pairs and, in the case of secondary amines, this occurs through hydrogen bonding to the ammonium hydrogen atoms. However, where tertiary amines are concerned, there are insufficient hydrogen atoms available and so an electrophilic iodine atom from a neighbouring 4‐iodotetrafluorophenate group forms an I???O halogen bond to give the second interaction. However, in some co‐crystals with secondary amines, it is also found that in addition to the two hydrogen bonds forming with the phenate oxygen sp2 lone pairs, there is an additional intermolecular I???O halogen bond in which the electrophilic iodine atom interacts with the C?O π‐system. All attempts to reproduce this behaviour with 4‐bromotetrafluorophenol were unsuccessful. These structural motifs are significant as they reproduce extremely well, in low‐molar‐mass synthetic systems, motifs found by Ho and co‐workers when examining halogen‐bonding interactions in biological systems. The analogy is cemented through the structures of co‐crystals of 1,4‐diiodotetrafluorobenzene with acetamide and with N‐methylbenzamide, which, as designed models, demonstrate the orthogonality of hydrogen and halogen bonding proposed in Ho’s biological study. 相似文献
8.
Prof. Dr. Seiji Shirakawa Shiyao Liu Shiho Kaneko Yusuke Kumatabara Airi Fukuda Yumi Omagari Prof. Dr. Keiji Maruoka 《Angewandte Chemie (International ed. in English)》2015,54(52):15767-15770
Although the hydrogen‐bonding ability of the α hydrogen atoms on tetraalkylammonium salts is often discussed with respect to phase‐transfer catalysts, catalysis that utilizes the hydrogen‐bond‐donor properties of tetraalkylammonium salts remains unknown. Herein, we demonstrate hydrogen‐bonding catalysis with newly designed tetraalkylammonium salt catalysts in Mannich‐type reactions. The structure and the hydrogen‐bonding ability of the new ammonium salts were investigated by X‐ray diffraction analysis and NMR titration studies. 相似文献
9.
Jin‐Yi Lin JenIt Wong Ling‐Hai Xie Xiao‐Chen Dong Hui Ying Yang Wei Huang 《Macromolecular rapid communications》2014,35(9):895-900
Supramolecular polyfluorenol enable assembly into conjugated polymer nanoparticles (CPNs). Poly{9‐[4‐(octyloxy)phenyl]fluoren‐9‐ol‐2,7‐diyl} (PPFOH)‐based supramolecular nanoparticles are prepared via reprecipitation. PPFOH nanoparticles with diameters ranging from 40 to 200 nm are obtained by adding different amounts of water into DMF solution. Size‐dependent luminescence is observed in PPFOH‐based hydrogen‐bonded nanoparticles that is different from that of poly(9,9‐dioctylfluorenes). Finally, white light‐emitting devices using CPNs with a size of 80 nm exhibit white emission with the CIE coordinates (0.31, 0.34). Amphiphilic conjugated polymer nanoparticles are potential organic nano‐inks for the fabrication of organic devices in printed electronics.
10.
Hydrogen‐Bonded Complexes and Blends of Poly(acrylic acid) and Methylcellulose: Nanoparticles and Mucoadhesive Films for Ocular Delivery of Riboflavin 下载免费PDF全文
Olga V. Khutoryanskaya Peter W. J. Morrison Serzhan K. Seilkhanov Marat N. Mussin Elvira K. Ozhmukhametova Tolebai K. Rakhypbekov Vitaliy V. Khutoryanskiy 《Macromolecular bioscience》2014,14(2):225-234
Poly(acrylic acid) (PAA) and methylcellulose (MC) are able to form hydrogen‐bonded interpolymer complexes (IPCs) in aqueous solutions. In this study, the complexation between PAA and MC is explored in dilute aqueous solutions under acidic conditions. The formation of stable nanoparticles is established, whose size and colloidal stability are greatly dependent on solution pH and polymers ratio in the mixture. Poly(acrylic acid) and methylcellulose are also used to prepare polymeric films by casting from aqueous solutions. It is established that uniform films can be prepared by casting from polymer mixture solutions at pH 3.4–4.5. At lower pHs (pH < 3.0) the films have inhomogeneous morphology resulting from strong interpolymer complexation and precipitation of polycomplexes, whereas at higher pHs (pH 8.3) the polymers form fully immiscible blends because of the lack of interpolymer hydrogen‐bonding. The PAA/MC films cast at pH 4 are shown to be non‐irritant to mucosal surfaces. These films provide a platform for ocular formulation of riboflavin, a drug used for corneal cross‐linking in the treatment of keratoconus. An in vitro release of riboflavin as well as an in vivo retention of the films on corneal surfaces can be controlled by adjusting PAA/MC ratio in the formulations. 相似文献
11.
The article discusses the development and properties of supramolecular polymers based on quadruple hydrogen bonds between self‐complementary ureidotriazine (UTr) and ureidopyrimidinone (UPy) functional groups. The high association constant with which these groups dimerize leads to polymers with a high degree of polymerization in isotropic solution. Application of these units for the functionalization of telechelic polymers results in new materials with mechanical properties approaching those of covalent polymers, but with a much stronger temperature‐dependent behavior. Solvophobic interactions between the hydrogen bonding moieties may be used to obtain supramolecular polymers with a well defined helical columnar architecture. Another consequence of the high dimerization constant of the UPy group is the phenomenon of a critical concentration in solutions of many bifunctional monomers. Below this concentration, only cycles are present, while above the critical concentration, the amount of cycles remains constant, and a polymer is formed. Conformational properties of the linker units are used to control the equilibrium between polymers and cycles, and are proposed to form a promising strategy toward tunable materials.
12.
Highly Ordered Nanoporous Films from Supramolecular Diblock Copolymers with Hydrogen‐Bonding Junctions 下载免费PDF全文
Dr. Damien Montarnal Dr. Nicolas Delbosc Cécile Chamignon Dr. Marie‐Alice Virolleaud Yingdong Luo Prof. Craig J. Hawker Prof. Eric Drockenmuller Dr. Julien Bernard 《Angewandte Chemie (International ed. in English)》2015,54(38):11117-11121
We designed efficient precursors that combine complementary associative groups with exceptional binding affinities and thiocarbonylthio moieties enabling precise RAFT polymerization. Well defined PS and PMMA supramolecular polymers with molecular weights up to 30 kg mol?1 are synthesized and shown to form highly stable supramolecular diblock copolymers (BCPs) when mixed, in non‐polar solvents or in the bulk. Hierarchical self‐assembly of such supramolecular BCPs by thermal annealing affords morphologies with excellent lateral order, comparable to features expected from covalent diblock copolymer analogues. Simple washing of the resulting materials with protic solvents disrupts the supramolecular association and selectively dissolves one polymer, affording a straightforward process for preparing well‐ordered nanoporous materials without resorting to crosslinking or invasive chemical degradations. 相似文献
13.
The Cyclic Hydrogen‐Bonded 6‐Azaindole Trimer and its Prominent Excited‐State Triple‐Proton‐Transfer Reaction 下载免费PDF全文
Ting‐Hsun Tu Yi‐Ting Chen Yi‐An Chen Yu‐Chen Wei You‐Hua Chen Chi‐Lin Chen Jiun‐Yi Shen Yi‐Han Chen Ssu‐Yu Ho Kum‐Yi Cheng Shern‐Long Lee Prof. Dr. Chun‐hsien Chen Prof. Dr. Pi‐Tai Chou 《Angewandte Chemie (International ed. in English)》2018,57(18):5020-5024
The compound 6‐azaindole undergoes self‐assembly by formation of N(1)?H???N(6) hydrogen bonds (H bonds), forming a cyclic, triply H‐bonded trimer. The formation phenomenon is visualized by scanning tunneling microscopy. Remarkably, the H‐bonded trimer undergoes excited‐state triple proton transfer (ESTPT), resulting in a proton‐transfer tautomer emission maximized at 435 nm (325 nm of the normal emission) in cyclohexane. Computational approaches affirm the thermodynamically favorable H‐bonded trimer formation and the associated ESTPT reaction. Thus, nearly half a century after Michael Kasha discovered the double H‐bonded dimer of 7‐azaindole and its associated excited‐state double‐proton‐transfer reaction, the triply H‐bonded trimer formation of 6‐azaindole and its ESTPT reaction are demonstrated. 相似文献
14.
Dr. Christer B. Aakeröy Kanishka Epa Dr. Safiyyah Forbes Dr. Nathan Schultheiss Dr. John Desper 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(44):14998-15003
Systematic co‐crystallizations resulting in a total of six new crystal structures involving either 3‐hydroxy‐ or 4‐hydroxybenzoic acid, complemented by calculated molecular electrostatic potential surfaces and existing structural data, have shown that in a competitive molecular recognition situation, the ? OH moiety is a more effective hydrogen‐bond donor than the ? COOH moiety which, in turn, highlights that electrostatic charge can offer more useful guidance than acidity for predicting competitive hydrogen‐bond preferences. 相似文献
15.
Dipl.‐Chem. Manuel Stapf Dr. Wilhelm Seichter Prof. Dr. Monika Mazik 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(17):6350-6354
H3O+ and OH?, formed by the self‐ionization of two coordinating water molecules during the crystal growing of a host molecule [1,3,5‐tris(hydroxymethyl)2,4,6‐triethylbenzene ( 1 )], could be effectively stabilized by hydrogen‐bonding interactions with the preorganized hydroxy groups of three molecules of 1. The binding motifs observed in the complex ( 1 )3?H3O+?HO? show remarkable similarity to those postulated for the hydrated hydronium and hydroxide ion complexes, which play important roles in various chemical, biological, and atmospheric processes, but their molecular structures are still not fully understood and remain a subject of intensive research. 相似文献
16.
Effect of Poly(amine)s on the Redox Properties of Carboxymethylcellulose and Ferrocene‐modified Poly(amine) Layer‐by‐Layer Films 下载免费PDF全文
Yu Aikawa Takumi Watanabe Daichi Minaki Shigehiro Takahashi Baozhen Wang Jun‐ichi Anzai 《Electroanalysis》2016,28(2):327-333
Multilayer films consisting of carboxymethylcellulose (CMC) and ferrocene‐modified poly(ethyleneimine) (Fc‐PEI) or poly(allylamine hydrochloride) (Fc‐PAH) were successfully prepared on a gold electrode to examine their redox properties. The redox current of (Fc‐PEI/CMC)n film‐coated electrodes increased with the number of layers, while the (Fc‐PAH/CMC)n film‐coated electrodes exhibited increased response only for the first eight bilayers. The (Fc‐PEI/CMC)n and (Fc‐PAH/CMC)n films deposited on the surface of Fc‐free multilayer film‐coated electrodes also showed a redox response. The (PEI/CMC)5 film‐coated electrode showed redox responses in Fc‐PEI and Fc‐PAH solutions, confirming the uptake of the Fc‐polymers in the inner film. In contrast, the uptake of the Fc‐polymers in the (PAH/CMC)5 film was severely suppressed, suggesting that different permeability of (PEI/CMC)5 and (PAH/CMC)5 films. 相似文献
17.
Helge Klare Sebastian Hanft Dr. Jörg M. Neudörfl Dr. Nils E. Schlörer Prof. Dr. Axel Griesbeck Prof. Dr. Bernd Goldfuss 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(37):11847-11855
Modular cyclodiphosph(V)azanes are synthesised and their affinity for chloride and actetate anions were compared to those of a bisaryl urea derivative ( 1 ). The diamidocyclodiphosph(V)azanes cis‐[{ArNHP(O)(μ‐tBu)}2] [Ar=Ph ( 2 ) and Ar=m‐(CF3)2Ph ( 3 )] were synthesised by reaction of [{ClP(μ‐NtBu)}2] ( 4 ) with the respective anilines and subsequent oxidation with H2O2. Phosphazanes 2 and 3 were obtained as the cis isomers and were characterised by multinuclear NMR spectroscopy, FTIR spectroscopy, HRMS and single‐crystal X‐ray diffraction. The cyclodiphosphazanes 2 and 3 readily co‐crystallise with donor solvents such as MeOH, EtOH and DMSO through bidentate hydrogen bonding, as shown in the X‐ray analyses. Cyclodiphosphazane 3 showed a remarkably high affinity (log[K]=5.42) for chloride compared with the bisaryl urea derivative 1 (log[K]=4.25). The affinities for acetate (AcO?) are in the same range ( 3 : log[K]=6.72, 1 : log[K]=6.91). Cyclodiphosphazane 2 , which does not contain CF3 groups, exhibits weaker binding to chloride (log[K]=3.95) and acetate (log[K]=4.49). DFT computations and X‐ray analyses indicate that a squaramide‐like hydrogen‐bond directionality and Cα?H interactions account for the efficiency of 3 as an anion receptor. The Cα?H groups stabilise the Z,Z‐ 3 conformation, which is necessary for bidentate hydrogen bonding, as well as coordinating with the anion. 相似文献
18.
An Enantiopure Hydrogen‐Bonded Octameric Tube: Self‐Sorting and Guest‐Induced Rearrangement 下载免费PDF全文
Dovilė Račkauskaitė Rokas Gegevičius Prof. Yutaka Matsuo Prof. Kenneth Wärnmark Prof. Edvinas Orentas 《Angewandte Chemie (International ed. in English)》2016,55(1):208-212
The assembly of a discrete hydrogen‐bonded molecular tube from eight small identical monomers is reported. Tube assembly was accomplished by means of selective heterodimerization between isocytosine and ureidopyrimidinone hydrogen‐bonding motifs embedded in an enantiopure bicyclic building block, leading to the selective formation of an octameric supramolecular tube. Upon introduction of a fullerene guest molecule, the octameric tube rearranges into a tetrameric inclusion complex and the hydrogen‐bonding mode is switched. The dynamic behavior of the system is further explored in solvent‐ and guest‐responsive self‐sorting experiments. 相似文献
19.
20.
Kan Zhang Pablo Froimowicz Lu Han Hatsuo Ishida 《Journal of polymer science. Part A, Polymer chemistry》2016,54(22):3635-3642
Monofunctional benzoxazine with ortho‐methylol functionality has been synthesized and highly purified. The chemical structure of the synthesized monomer has been confirmed by 1H and 13C nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT‐IR) and elemental analysis. One‐dimensional (1D) 1H NMR is used with respect to varied concentration of benzoxazines to study the specific nature of hydrogen bonding in both ortho‐methylol functional benzoxazine and its para counterpart. The polymerization behavior of benzoxazine monomer has been also studied by in situ FT‐IR and differential scanning calorimetry, experimentally supporting the polymerization mechanism of ortho‐methylol functional benzoxazine we proposed before. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3635–3642 相似文献