首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various polymerization mechanisms have been developed to prepare peptide‐immobilized poly(ethylene glycol) (PEG) hydrogels, a class of biomaterials suitable for studying cell biology in vitro. Here, a visible light mediated thiol‐acrylate photopolymerization scheme is reported to synthesize dually degradable PEG‐peptide hydrogels with controllable crosslinking and degradability. The influence of immobilized monothiol pendant peptide is systematically evaluated on the crosslinking of these hydrogels. Further, methods are proposed to modulate hydrogel crosslinking, including adjusting concentration of comonomer or altering the design of multifunctional peptide crosslinker. Due to the formation of thioether ester bonds, these hydrogels are hydrolytically degradable. If the dithiol peptide linkers used are susceptible to protease cleavage, these thiol‐acrylate hydrogels can be designed to undergo partial proteolysis. The differences between linear and multiarm PEG‐acrylate (i.e., PEGDA vs PEG4A) are also evaluated. Finally, the use of the mixed‐mode thiol‐acrylate PEG4A‐peptide hydrogels is explored for in situ encapsulation of hepatocellular carcinoma cells (Huh7). The effects of matrix stiffness and integrin binding motif (e.g., RGDS) on Huh7 cell growth and HIPPO pathway activation are studied using PEG4A‐peptide hydrogels. This visible light poly­merized thiol‐acrylate hydrogel system represents an alternative to existing light‐cured hydrogel platforms and shall be useful in many biomedical applications.  相似文献   

2.
Construction of 3D tissues by various types of cells with specific characteristics is an important and fundamental technology in tissue reconstruction medicine and animal‐free diagnosis system. To do so, an excellent extracellular matrix (ECM) is needed for encapsulation of cells and maintaining cell activity. Spontaneously forming hydrogel matrix is used by complexation between two water‐soluble polymers, 2‐methacryloyloxyethyl phosphorylcholine polymer bearing phenylboronic acid groups and poly(vinyl alcohol). Two cytokines for cell proliferation are immobilized in the hydrogel matrix to control the activities of the encapsulated cells. The cytokine‐immobilized hydrogel matrix can encapsulate both L929 fibroblasts and normal human dermal fibroblasts under mild condition. The physical properties of the hydrogel matrix can follow the proliferation process of the encapsulated cells. The encapsulated cells secrete ECM in the polymer hydrogel networks upon 3D culturing for 7 days. Consequently, the tissue‐mimicking ECM hybrid hydrogels are fabricated successfully.  相似文献   

3.
Intact living cells, because of their simplicity of use and their ability to provide highly valuable functional information, are well suited to biosensing applications. Cells can be genetically engineered by introduction of reporter proteins, modified to achieve analyte selectivity for their sensing capabilities, and connected to a transducer to obtain whole-cell biosensors. These bioanalytical features are increasingly attracting attention in the pharmaceutical, environmental, medical, and industrial fields. Whole-cell biosensors based on different recognition elements and transduction mechanisms have been also incorporated into portable devices and, with recent advances in micro and nanofabrication and microfluidics technology, miniaturized to achieve single-cell level analysis. Cell immobilization, widely used in, for example, microbial biofermentors or bioremediation systems, is now emerging as an appealing way of integrating whole-cell biosensors into devices, to maintain long-term cell viability, to increase the reproducibility of the cell’s response, and to avoid the spread of genetically modified cells into the environment, the latter being very important when devices are used for analysis in the field. A plethora of materials and functionalized surfaces have been proposed for immobilization of microbial or mammalian cells, each one having peculiar advantages and limitations. This critical review highlights and discusses recent trends, together with selected bioanalytical applications of immobilized viable cells. In particular the review focuses on some aspects that seem to hold great promise for future applications of immobilized cells, spanning from microbial biosensors to microbial biofilms, cell microarrays, and single-cell analysis.  相似文献   

4.
Hydrogel microparticles are important in materials engineering, but their applications remain limited owing to the difficulties associated with their manipulation. Herein, we report the self‐orientation of crescent‐shaped hydrogel microparticles and elucidate its mechanism. Additionally, the microparticles were used, for the first time, as micro‐buckets to carry living cells. In aqueous solution, the microparticles spontaneously rotated to a preferred orientation with the cavity facing up. We developed a geometric model that explains the self‐orienting behavior of crescent‐shaped particles by minimizing the potential energy of this specific morphology. Finally, we selectively modified the particles’ cavities with RGD peptide and exploited their preferred orientation to load them with living cells. Cells could adhere, proliferate, and be transported and released in vitro. These micro‐buckets hold a great potential for applications in smart materials, cell therapy, and biological engineering.  相似文献   

5.
In this study, we immobilized enzymes by combining covalent surface immobilization and hydrogel entrapment. A model enzyme, glucose oxidase (GOX), was first covalently immobilized on the surface of silica nanoparticles (SNPs) via 3‐aminopropyltriethoxysilane (APTES), and the resultant SNP‐immobilized enzyme was physically entrapped within photopolymerized hydrogels prepared from two different molecular weights (MWs) (575 and 8000 Da) of poly(ethylene glycol)(PEG). The hydrogel entrapment resulted in a decrease in reaction rate and an increase in apparent Km of SNP‐immobilized GOX, but these negative effects could be minimized by using hydrogel with a higher MW PEG, which provides higher water content and larger mesh size. The catalytic rate of the PEG 8000 hydrogel was about ten times faster than that of the PEG 575 hydrogel because of enhanced mass transfer. Long‐term stability test demonstrated that SNP‐immobilized GOX entrapped within hydrogel maintained more than 60% of its initial activity after a week, whereas non‐entrapped SNP‐immobilized GOX and entrapped GOX without SNP immobilization maintained less than 20% of their initial activity. Incorporation of SNPs into hydrogel enhanced the mechanical strength of the hydrogel six‐fold relative to bare hydrogels. Finally, a hydrogel microarray entrapping SNP‐immobilized GOX was fabricated using photolithography and successfully used for quantitative glucose detection. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
In cartilage regeneration, the biomimetic functionalization of hydrogels with growth factors is a promising approach to improve the in vivo performance and furthermore the clinical potential of these materials. In order to achieve this without compromising network properties, multifunctional linear poly(glycidol) acrylate (PG‐Acr) is synthesized and utilized as crosslinker for hydrogel formation with thiol‐functionalized hyaluronic acid via Michael‐type addition. As proof‐of‐principle for a bioactivation, transforming growth factor‐beta 1 (TGF‐β1) is covalently bound to PG‐Acr via Traut's reagent which does not compromise the hydrogel gelation and swelling behavior. Human mesenchymal stromal cells (MSCs) embedded within these bioactive hydrogels show a distinct dose‐dependent chondrogenesis. Covalent incorporation of TGF‐β1 significantly enhances the chondrogenic differentiation of MSCs compared to hydrogels with supplemented noncovalently bound TGF‐β1. The observed chondrogenic response is similar to standard cell culture with TGF‐β1 addition with each medium change. In general, multifunctional PG‐Acr offers the opportunity to introduce a range of biomimetic modifications (peptides, growth factors) into hydrogels and, thus, appears as an attractive potential material for various applications in regenerative medicine.  相似文献   

7.
The mild preparation of multifunctional nanocomposite hydrogels is of great importance for practical applications. We report that bioinorganic nanocomposite hydrogels, with calcium niobate nanosheets as cross‐linkers, can be prepared by dual‐enzyme‐triggered polymerization and exfoliation of the layered composite. The layered HRP/calcium niobate composites (HRP=horseradish peroxidase) are formed by the assembly of the calcium niobate nanosheets with HRP. The dual‐enzyme‐triggered polymerization can induce the subsequent exfoliation of the layered composite and final gelation through the interaction between polymer chains and inorganic nanosheets. The self‐immobilized HRP‐GOx enzymes (GOx=glucose oxidase) within the nanocomposite hydrogel retain most of enzymatic activity. Evidently, their thermal stability and reusability can be improved. Notably, our strategy could be easily extended to other inorganic layered materials for the fabrication of other functional nanocomposite hydrogels.  相似文献   

8.
Interactive materials being responsive to a biocompatible stimulus represent a promising approach for future therapeutic applications. In this study, we present a novel biohybrid material synthesized from biocompatible components being stimulus‐responsive to the pharmaceutically approved small‐molecule novobiocin. The hydrogel design is based on the gyrase B (GyrB) protein, which is covalently grafted to multi‐arm polyethylene glycol (PEG) using a Michael‐type addition reaction. Upon addition of the GyrB‐dimerizing substance coumermycin, stable hydrogels form which can be dissolved in a dose‐adjustable manner by the antibiotic novobiocin. The switchable properties of this PEG‐based hydrogel are favorable for future applications in tissue engineering and as externally controlled drug depot.  相似文献   

9.
A novel method based on fluorescence detection of hydrogel encapsulated cells in microchannels was developed for anticancer drug analysis. In this work, human hepatoma HepG2 cells and human lung epithelial A549 cells were simultaneously immobilized inside two different shapes of three-dimensional hydrogel microstructures using photolithography approach on a same array. Microarrays of living cells offer the potential for parallel detection of many cells and thereby enable high-throughput assays. Using a photolithographic setup, we investigated the prepolymer composition and crosslinking parameters that influenced cell viability inside photocrosslinked hydrogels. The viability of cells encapsulated inside hydrogel microstructures was higher than 90% under optimized photocrosslinking conditions. The cells were further cultured under stable conditions and remained viable for at least three days that were able to carry out cell-based assays. Furthermore, we studied the variation of two intracellular redox parameters (glutathione and reactive oxygen species) in anticancer drug-induced apoptosis in HepG2 and A549 cells. Two anticancer drugs exhibited distinct effects on the levels of intracellular glutathione and reactive oxygen species, indicating the selectivity of these drugs on the disturbance of redox balance within cells. The established platform provides a convenient and fast method for monitoring the effect of anticancer drugs on tumor cells, which is very useful for fundamental biomedical research.  相似文献   

10.
Thermosensitive hydrogel made up of poly(N‐isopropylacrylamide) (PNIPA)‐chitosan semi‐interpenetrating network (semi‐IPN) with ultrarapid responding rate was synthesized. Horseradish peroxidase (HRP) was then immobilized on this hydrogel that acted as an enzyme‐carrier by glutaraldehyde bridge. Polymerization of acrylamide was initiated by a redox system (hydrogen peroxide/acetylacetone (Acac)) and was catalyzed by the immobilized enzyme at room temperature. The attention was focused on the properties of the carrier‐enzyme systems. The hydrogel was proofed to be macroporous by environmental scanning electron microscope images. Swelling properties of the hydrogel such as swelling ratio and deswelling–reswelling kinetics were measured. The properties of the immobilized enzyme such as enzyme activity, storage stability, and thermostability were also studied. The immobilized enzyme could be used repeatedly. Gel permeation chromatography measurement of the resulted polyacrylamide (PAAm) showed that the molecular weight reduced as the repeated times of the immobilized enzyme catalysis increased. In conclusion, the macroporous hydrogel would be a suitable enzyme carrier for practical applications in future. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2222–2232, 2008  相似文献   

11.
In the face of challenges in the development of excellent biocompatible materials for microfluidic device fabrication, we demonstrated that cross-linked cellulose (RCC) hydrogel can be used as the bulk material for microchips. The cellulose hydrogel was prepared from cellulose solution dissolved in an 8 wt% LiOH/15 wt% urea aqueous system with cooling by crosslinking with epichlorohydrin. Collagen as a key extracellular matrix component for promoting cell cultivation was cross-linked in the cellulose hydrogel to obtain cellulose–collagen (RCC/C) hybrid hydrogels. The experimental results revealed that cellulose-based hydrogel microchips with well-defined 2D or 3D microstructures possessed excellent structural replication ability, good mechanical properties, and cytocompatibility for cell culture as well as excellent dimensional stability at elevated temperature. The hydrogel, as a transparent microchip material, had no effect on the fluorescence behaviors of FITC-dextran and rhodamine-dextran, leading to the good conjunction with fluorescent detection and imaging. Moreover, collagen could be immobilized in the RCC/C hydrogel scaffold for promoting cell growth and generating stable chemical concentration gradients, leading to superior cytocompatibility. This work provides new hydrogel materials for the microfluidic technology field and mimicks a 3D cell culture microenvironment for cell-based tissue engineering and drug screening.  相似文献   

12.
Photochemical ligation is important in biomaterials engineering for spatiotemporal control of biochemical processes. Such reactions however generally require activation by high energy UV or short wavelength blue light, which can limit their use as a consequence of the potential of these high energy light sources to damage living cells. Herein, we present an additive‐free, biocompatible, chemical ligation triggered by mild visible light. BODIPY dyes with a pendant thioether attached at the meso‐position undergo photolysis of the [C?S] bond under green light (λ=530 nm) excitation, producing an ion pair intermediate that can react specifically with a propiolate group. The utility of this photochemical ligation in materials science is demonstrated by the fabrication of hydrogels with specific architectures, photo‐immobilization of biomacromolecules, and live cell encapsulation within a hydrogel scaffold.  相似文献   

13.
There is a growing interest in materials that can dynamically change their properties in the presence of cells to study mechanobiology. Herein, we exploit the 365 nm light mediated [4+4] photodimerization of anthracene groups to develop cytocompatible PEG‐based hydrogels with tailorable initial moduli that can be further stiffened. A hydrogel formulation that can stiffen from 10 to 50 kPa, corresponding to the stiffness of a healthy and fibrotic heart, respectively, was prepared. This system was used to monitor the stiffness‐dependent localization of NFAT, a downstream target of intracellular calcium signaling using a reporter in live cardiac fibroblasts (CFbs). NFAT translocates to the nucleus of CFbs on stiffening hydrogels within 6 h, whereas it remains cytoplasmic when the CFbs are cultured on either 10 or 50 kPa static hydrogels. This finding demonstrates how dynamic changes in the mechanical properties of a material can reveal the kinetics of mechanoresponsive cell signaling pathways that may otherwise be missed in cells cultured on static substrates.  相似文献   

14.
Compounds that can gelate aqueous solutions offer an intriguing toolbox to create functional hydrogel materials for biomedical applications. Amphiphilic Janus dendrimers with low molecular weights can readily form self‐assembled fibers at very low mass proportion (0.2 wt %) to create supramolecular hydrogels (G′?G′′) with outstanding mechanical properties and storage modulus of G′>1000 Pa. The G′ value and gel melting temperature can be tuned by modulating the position or number of hydrophobic alkyl chains in the dendrimer structure; thus enabling exquisite control over the mesoscale material properties in these molecular assemblies. The gels are formed within seconds by simple injection of ethanol‐solvated dendrimers into an aqueous solution. Cryogenic TEM, small‐angle X‐ray scattering, and SEM were used to confirm the fibrous structure morphology of the gels. Furthermore, the gels can be efficiently loaded with different bioactive cargo, such as active enzymes, peptides, or small‐molecule drugs, to be used for sustained release in drug delivery.  相似文献   

15.
A fabrication strategy for biphasic gels is reported, which incorporates high‐internal‐phase emulsions. Closely packed micro‐inclusions within the elastic hydrogel matrix greatly improve the mechanical properties of the materials. The materials exhibit excellent switchable mechanics and shape‐memory performance because of the switchable micro‐ inclusions that are incorporated into the hydrogel matrix. The produced materials demonstrated a self‐healing capacity that originates from the noncovalent effect of the biphasic heteronetwork. The aforementioned characteristics suggest that the biphasic gels may serve as ideal composite gel materials with validity in a variety of applications, such as soft actuators, flexible devices, and biological materials.  相似文献   

16.
Exosomes, as messengers of cell-to-cell communication, have many functional properties similar to those of their derived cells. Because they contain a large number of bioactive components that regulate recipient cell behavior, they are inanimate and do not require external maintenance or assistance. Various cell-derived exosomes are involved in many physiological processes of bone tissue repair. Hydrogels are widely used as scaffolding materials for bone tissue repair because their 3D network structure resembles the natural extracellular matrix. Moreover, their material properties and biological functions are adjustable. Exosomes can be delivered directly to the bone tissue damage site by hydrogel, and their duration of action in vivo can be prolonged by slow release. Therefore, the exosome-loaded hydrogel (Exo-Gel) system is a promising material for bone tissue engineering. In this study, the progress of the application of Exo-Gel in bone tissue repair and the improvement strategies, problems and research prospects of the current exosomes and hydrogels that have been applied to the Exo-Gel system for bone tissue repair are reviewed.  相似文献   

17.
Hydrogels have been used for many applications in tissue engineering and regenerative medicine due to their versatile material properties and similarities to the native extracellular matrix. Poly (ethylene glycol) diacrylate (PEGDA) is an ionic electroactive polymer (EAP), a material that responds to an electric field with a change in size or shape while in an ionic solution, that may be used in the development of hydrogels. In this study, we have investigated a positively charged EAP that can bend without the need of external ions. PEGDA was modified with the positively charged molecule 2‐(methacryloyloxy)ethyl‐trimethylammonium chloride (MAETAC) to provide its own positive ions. This hydrogel was then characterized and optimized for bending and cellular biocompatibility with C2C12 mouse myoblast cells. Studies show that the polymer responds to an electric field and supports C2C12 viability.  相似文献   

18.
Despite tremendous progress in developing doped carbocatalysts for the oxygen reduction reaction (ORR), the ORR activity of current metal‐free carbocatalysts is still inferior to that of conventional Pt/C catalysts, especially in acidic media and neutral solution. Moreover, it also remains a challenge to develop an effective and scalable method for the synthesis of metal‐free carbocatalysts. Herein, we have developed nitrogen and phosphorus dual‐doped hierarchical porous carbon foams (HP‐NPCs) as efficient metal‐free electrocatalysts for ORR. The HP‐NPCs were prepared for the first time by copyrolyzing nitrogen‐ and phosphorus‐containing precursors and poly(vinyl alcohol)/polystyrene (PVA/PS) hydrogel composites as in situ templates. Remarkably, the resulting HP‐NPCs possess controllable nitrogen and phosphorus content, high surface area, and a hierarchical interconnected macro‐/mesoporous structure. In studying the effects of the HP‐NPCs on the ORR, we found that the as‐prepared HP‐NPC materials exhibited not only excellent catalytic activity for ORR in basic, neutral, and acidic media, but also much better tolerance for methanol oxidation and much higher stability than the commercial, state‐of‐the‐art Pt/C catalysts. Because of all these outstanding features, it is expected that the HP‐NPC material will be a very suitable catalyst for next‐generation fuel cells and lithium–air batteries. In addition, the novel synthetic method described here might be extended to the preparation of many other kinds of hierarchical porous carbon materials or porous carbon that contains metal oxide for wide applications including energy storage, catalysis, and electrocatalysis.  相似文献   

19.
Reversible immobilization of DNA and RNA is of great interest to researchers who seek to manipulate DNA or RNA in applications such as microarrays, DNA hydrogels, and gene therapeutics. However, there is no existing system that can rapidly capture and release intact nucleic acids. To meet this unmet need, we developed a functional hydrogel for rapid DNA/RNA capture and release based on the reversible photo‐cycloaddition of psoralen and pyrimidines. The functional hydrogel can be easily fabricated through copolymerization of acrylamide with the synthesized allylated psoralen. The psoralen‐functionalized hydrogel exhibits effective capture and release of nucleic acids spanning a wide range of lengths in a rapid fashion; over 90 % of the capture process is completed within 1 min, and circa 100 % of the release process is completed within 2 min. We observe no deleterious effects on the hybridization to the captured targets.  相似文献   

20.
Given increasing environmental issues due to the large usage of non‐biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio‐inspired synthesis of mineral‐based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)‐based hydrogel consisting of very small ACC nanoparticles physically cross‐linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self‐healable. Upon drying, the hydrogel forms free‐standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the “mineral plastics”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号