首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new approach was proposed for the synthesis of 2‐azido‐1,3‐diols from easily available and inexpensive chiral pool synthon (R)‐2,3‐O‐cyclohexylidene‐D ‐glyceraldehyde, through Mitsunobu azidation of 1,2‐diols. Both C(2) and C(1) azides in variable ratios were obtained in alkyl substituted diols with C(2) as the major one.  相似文献   

2.
A highly stereoselective route to the polysubstituted chiral octahydrobenzofuran 12 , a potential synthon for the E‐ring core in the (?)reserpine synthesis, is described. The α‐bromo acetal 11 was obtained from inexpensive (?)‐shikimic acid ( 3 ) through a series of highly stereoselective chemical reactions (Scheme). Et3B/Bu3SnH‐Mediated intramolecular radical cyclization of 11 led to compound 12 with the required configuration.  相似文献   

3.
Racemic 2‐amino‐1,2,3,4‐tetrahydronaphthalene‐5,6‐diol (5,6‐ADTN; 4 ) was synthesized from 5,6‐dimethoxynaphthalene‐2‐carboxylic acid ( 14 ) in four steps (60% overall yield; Scheme). The crucial steps of the synthesis are Birch reduction of 14 to the valuable synthon 15 , Curtius reaction and carbamate formation ( 16 ), hydrogenolysis ( 17 ), and demethylation to the biologically active hydrobromide salt 18 of 4 .  相似文献   

4.
A new enantioselective synthesis of furan‐2‐yl amines and amino acids is described, in which the key step is the oxazaborolidine‐catalyzed enantioselective reduction of O‐benzyl (E) and (Z)‐furan‐2‐yl ketone oximes to the corresponding chiral amines. The chirality of the furan‐2‐yl amines is fully controlled by the appropriate choice of the geometrical isomer of the O‐benzyl oxime. Oxidation of the furan ring furnished amino acids in high yields.  相似文献   

5.
The first enantioselective synthesis of (?)‐pallavicinin and (+)‐neopallavicinin has been achieved in 15 steps. The described synthesis avoids protecting‐group manipulations by synthesis designs predicated on highly chemo‐ and stereoselective transformations. Highlights of the synthesis include a palladium‐catalyzed enantioselective decarboxylative allylation to form the chiral all‐carbon quaternary stereocenter, a palladium‐catalyzed oxidative cyclization to assemble the [3.2.1]‐bicyclic moiety, and an unprecedented LiBHEt3‐induced fragmentation/protonation of an α‐hydroxy epoxide to form the α‐furan ketone with the desired configuration.  相似文献   

6.
Salvinorin A ( 1 ) is natural hallucinogen that binds the human κ‐opioid receptor. A total synthesis has been developed that parlays the stereochemistry of l ‐(+)‐tartaric acid into that of (?)‐ 1 via an unprecedented allylic dithiane intramolecular Diels–Alder reaction to obtain the trans‐decalin scaffold. Tsuji allylation set the C9 quaternary center and a late‐stage stereoselective chiral ligand‐assisted addition of a 3‐titanium furan upon a C12 aldehyde/C17 methyl ester established the furanyl lactone moiety. The tartrate diol was finally converted into the C1,C2 keto‐acetate.  相似文献   

7.
Surprising Reaction of 5‐(Phenylthio)‐ and 5‐(Methylthio)pent‐2‐en‐4‐inal with HCl Contrary to expectations (Scheme 1), 5‐(phenylthio)‐( 1a ) as well as 5‐(methylthio)pent‐2‐en‐4‐inal ( 1b ) react with a slight excess of HCl to give 2‐[bis(phenylthio)methyl]furan ( 17a , 77% yield) and 2‐[bis(methylthio)methyl]furan ( 17b , 61% yield), respectively. Structures 17a and 17b are supported by the results of an X‐ray crystal‐structure analysis, by spectroscopic data in comparison to those of model compounds, and by synthesis of 17a . This surprising reaction is tentatively explained by a mechanism (Scheme 4), including a special pyran→furan ring‐contraction sequence, which is in agreement with a labelling experiment.  相似文献   

8.
The fungal metabolite TAN‐2483B has a 2,6‐trans‐relationship across the pyran ring of its furo[3,4‐b]pyran‐5‐one core, which has thwarted previous attempts at its synthesis. We have now developed a chiral pool approach to this core and prepared side‐chain analogues of TAN‐2483B. The synthesis relies on ring expansion of a reactive furan ring‐fused dibromocyclopropane and alkynylation of the resulting pyran. The furan ring is constructed by palladium‐catalysed carbonylative lactonisation. Various side‐chains are appended through Wittig‐type chemistry. The prepared analogues showed micromolar activity towards cancer cell lines HL‐60, 1A9 and MCF‐7 and certain human disease‐relevant kinases, including Bruton's tyrosine kinase (Btk).  相似文献   

9.
The asymmetric total synthesis of natural azasugars (+)‐castanospermine, (+)‐7‐deoxy‐6‐epi‐castanospermine, and synthetic (+)‐1‐epi‐castanospermine has been accomplished in nine to ten steps from a common chiral building block (S)‐ 8 . The method features a powerful chiral relay strategy consisting of a highly diastereoselective vinylogous Mukaiyama‐type reaction with either chiral or achiral aldehydes (≥95 % de; de=diastereomeric excess) and a diastereodivergent reduction of tetramic acids, which allows formation of three continuous stereogenic centers with high diastereoselectivities. The method also provides a flexible access to structural arrays of 5‐(α‐hydroxyalkyl)tetramic acids, such as 17/34 , and 5‐(α‐hydroxyalkyl)‐4‐hydroxyl‐2‐pyrrolidinones, such as 18 and 25/35 a . The method constitutes the first realization of the challenging chiral synthons A and D and thus of the conceptually attractive retrosynthetic analysis shown in Scheme 1 in a highly enantioselective manner.  相似文献   

10.
The synthesis of novel unsymmetrically 2,2‐disubstituted 2H‐azirin‐3‐amines with chiral auxiliary amino groups is described. Chromatographic separation of the mixture of diastereoisomers yielded (1′R,2S)‐ 2a , b and (1′R,2R)‐ 2a , b (c.f. Scheme 1 and Table 1), which are synthons for (S)‐ and (R)‐2‐methyltyrosine and 2‐methyl‐3′,4′‐dihydroxyphenylalanine. Another new synthon 2c , i.e., a synthon for 2‐(azidomethyl)alanine, was prepared but could not be separated into its pure diastereoisomers. The reaction of 2 with thiobenzoic acid, benzoic acid, and the amino acid Fmoc‐Val‐OH yielded the monothiodiamides 11 , the diamides 12 (cf. Scheme 3 and Table 3), and the dipeptides 13 (cf. Scheme 4 and Table 4), respectively. From 13 , each protecting group was removed selectively under standard conditions (cf. Schemes 5–7 and Tables 5–6). The configuration at C(2) of the amino acid derivatives (1R,1′R)‐ 11a , (1R,1′R)‐ 11b , (1S,1′R)‐ 12b , and (1R,1′R)‐ 12b was determined by X‐ray crystallography relative to the known configuration of the chiral auxiliary group.  相似文献   

11.
Highly N‐deacetylated chitosan was chosen as a natural chiral origin for the synthesis of the selectors of chiral stationary phases. Therefore, chitosan was firstly acylated by various alkyl chloroformates yielding chitosan alkoxyformamides, and then these resulting products were further derivatized with 4‐methylphenyl isocyanate to afford chitosan bis(4‐methylphenylcarbamate)‐(alkoxyformamide). A series of chiral stationary phases was prepared by coating these derivatives on 3‐aminopropyl silica gel. The content of the derivatives on the chiral stationary phases was nearly 20% by weight. The chiral stationary phases prepared from chitosan bis(4‐methylphenylcarbamate)‐(ethoxyformamide) and chitosan bis(4‐methylphenylcarbamate)‐(isopropoxyformamide) comparatively showed better enantioseparation capability than those prepared from chitosan bis(4‐methylphenylcarbamate)‐(n‐pentoxyformamide) and chitosan bis(4‐methylphenylcarbamate)‐(benzoxyformamide). The tolerance against organic solvents of the chiral stationary phase of chitosan bis(4‐methylphenylcarbamate)‐(ethoxyformamide) was investigated, and the results revealed that this phase can work in 100% ethyl acetate and 100% chloroform mobile phases. Because as‐synthesized chiral selectors did not dissolve in many common organic solvents, the corresponding chiral stationary phases can be utilized in a wider range of mobile phases in comparison with conventional coating type chiral stationary phases of cellulose and amylose derivatives.  相似文献   

12.
This report describes a gold(III)‐catalyzed efficient general route to densely substituted chiral 3‐formyl furans under extremely mild conditions from suitably protected 5‐(1‐alkynyl)‐2,3‐dihydropyran‐4‐one using H2O as a nucleophile. The reaction proceeds through the initial formation of an activated alkyne–gold(III) complex intermediate, followed by either a domino nucleophilic attack/anti‐endo‐dig cyclization, or the formation of a cyclic oxonium ion with subsequent attack by H2O. To confirm the proposed mechanistic pathway, we employed MeOH as a nucleophile instead of H2O to result in a substituted furo[3,2‐c]pyran derivative, as anticipated. The similar furo[3,2‐c]pyran skeleton with a hybrid carbohydrate–furan derivative has also been achieved through pyridinium dichromate (PDC) oxidation of a substituted chiral 3‐formyl furan. The corresponding protected 5‐(1‐alkynyl)‐2,3‐dihydropyran‐4‐one can be synthesized from the monosaccharides (both hexoses and pentose) following oxidation, iodination, and Sonogashira coupling sequences. Furthermore, to demonstrate the potentiality of chiral 3‐formyl furan derivatives, a TiBr4‐catalyzed reaction of these derivatives has been shown to offer efficient access to 1,5‐dicarbonyl compounds, which on treatment with NH4OAc in slightly acidic conditions afforded substituted furo[3,2‐c]pyridine.  相似文献   

13.
A robust, practical synthesis of (20S)‐10‐(3‐aminopropyloxy)‐7‐ethylcamptothecin (T‐2513, 5 ), which is a water‐soluble analogue of camptothecin, has been developed. The key step in this synthesis is a highly diastereoselective ethylation at the C20 position by using N‐arylsulfonyl‐(R)‐1,2,3,4‐tetrahydroisoquinoline‐3‐carboxylic acid ester as a chiral auxiliary, which affords the key intermediate ethyl‐(S)‐2‐acyloxy‐2‐(6‐cyano‐5‐oxo‐1,2,3,5‐tetrahydroindolizin‐7‐yl)butanoate ( 8 k ) in 93 % yield and 87 % de. Optically pure compound 8 k was obtained by a single recrystallization from acetone and its further elaboration through Friedlander condensation afforded compound 5 . This synthesis does not require any chromatographic purification steps and can provide compound 5 on a multi‐gram scale in 6.3 % overall yield (16 steps).  相似文献   

14.
The title compound, C13H6O4S5, possesses crystallographically imposed mirror symmetry, with the atoms of the C=S group lying on the mirror plane. It is an example of the general formula [RCO]2(dmit), where R is a furan ring and dmit is 2‐thioxo‐1,3‐dithiole‐4,5‐dithiol­ate. The components exhibit some polarization of their mol­ecular–electronic structure. The dmit and furan moieties exhibit a high degree of conjugation, as the introduction of C=O connecting the conjugated furan (donor) and dmit (acceptor) rings forms a good conjugated system with high delocalization. A polar three‐dimensional framework is built from a combination of inter­molecular contacts, namely S⋯S inter­actions and C—H⋯O hydrogen bonding. The structural characteristics lead to good second‐order non‐linear optical properties.  相似文献   

15.
The synthesis of a novel 2,2‐disubstituted 2H‐azirin‐3‐amine 3a as a building block for racemic Asp(2Me) is described. This synthon contains an ester group in the side chain. The reaction of 3a with thiobenzoic acid and the amino acid Z‐Val‐OH yielded the racemic monothiodiamide 10a and the dipeptide 11 as a mixture of diastereoisomers, respectively (Scheme 2). In 11 , each of the protecting groups was removed selectively (Scheme 3). First attempts toward the preparation of enantiomerically pure synthons for Asp(2Me) with a chiral auxiliary group in the side chain are described. Synthons 3b with a 1‐(naphthalen‐1‐yl)ethyl ester group and 3c with a menthyl ester group were prepared and reacted with thiobenzoic acid to form monothiodiamides 10b and 10c (Scheme 2). However, the diastereoisomers of the synthons 3b and 3c could not be separated by chromatography.  相似文献   

16.
The diastereoselective synthesis of the spermine alkaloid (R,R)‐hopromine ( 2 ) is described. The as yet unknown absolute configuration of naturally occurring (−)‐hopromine ( 2 ) is (R,R) and was established by comparison of the reported specific rotation of the natural product with that of the synthetic one. Preparation of the characteristic bis‐8‐membered lactam scaffold was carried out by convergent build‐up of basic chiral azalactam units 21a and 21b and subsequent iterative linking (Schemes 5 and 6). Key steps in the analogous syntheses of 4‐alkyl‐hexahydro‐1,5‐diazocin‐2(1H)‐ones 21a and 21b were the introduction of the unbranched alkyl side chains into their common precursor 14 via cuprate reaction and the Sb(OEt)3‐assisted cyclization of the open‐chain intermediates 20a and 20b , respectively (Schemes 3 and 4). The chiral iodoester 14 was prepared from commercially available (+)‐L ‐aspartic acid ( 12 ). Based on the synthetic strategy developed for (R,R)‐hopromine ( 2 ), a rapid access to the parent alkaloid homaline ( 1 ) in its (±)‐form is given.  相似文献   

17.
Homoharringtonine and its congener cephalotaxine were synthesized. Oxidative ring‐opening of a furan unveils an amine‐tethered dicarbonyl, which undergoes spontaneous transannular Mannich cyclization. The cascade builds the full cephalotaxine substructure in a single operation in 60 % yield. A Noyori reduction enabled synthesis of the title compounds with excellent enantioselectivity (krel=278).  相似文献   

18.
The synthesis, optical resolution, determination of absolute configuration and conformational preference, and spectroscopic characteristics of terminally protected (blocked) derivatives and short peptides of 2‐amino‐1,2,3,6‐tetrahydro‐6‐oxocyclopenta[c]fluorene‐2‐carboxylic acid (FlAib), a novel, rigid, chiral, cyclized Cα,α‐disubstituted glycine are described.  相似文献   

19.
A one‐step synthesis of ethyl 2,3‐dihydronaphtho[1,2‐b]furan‐2‐carboxylate and/or ethyl 4′‐oxospiro[cyclopropane‐1,1′(4′H)‐naphthalene]‐2′‐carboxylate derivatives 2 and 3 , respectively, from substituted naphthalen‐1‐ols and ethyl 2,3‐dibromopropanoate is described (Scheme 1). Compounds 2 were easily aromatized (Scheme 2). In the same way, 3,4‐dibromobutan‐2‐one afforded the corresponding 1‐(2,3‐dihydronaphtho[1,2‐b]furan‐2‐yl)ethanone and/or spiro derivatives 8 and 9 , respectively (Scheme 6). A mechanism for the formation of the dihydronaphtho[1,2‐b]furan ring and of the spiro compounds 3 is proposed (Schemes 3 and 4). The structures of spiro compounds 3a and 3f were established by X‐ray structural analysis. The reactivity of compound 3a was also briefly examined (Scheme 9).  相似文献   

20.
(−)‐(3S)‐3‐(Tosylamino)butano‐4‐lactone ( 1 ) and its derivative ethyl (−)‐(3S)‐4‐iodo‐3‐(tosylamino)butanoate ( 2 ) are presented as easily accessible chiral building blocks for the construction of a range of different macrolactam frameworks important for the synthesis of naturally occurring polyamine alkaloids as well as for establishing a substance library of such compounds, including S‐containing derivatives for biological tests. In addition to that, the absolute configuration of the spermine alkaloid (−)‐(R)‐budmunchiamine A ( 3 ) from Albizia amara was determined by total synthesis according to the new methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号