首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Liquid crystalline elastomers (LCEs) have been actively investigated as stimuli-controlled actuators and soft robots. The basis of these applications is the ability of LCEs to undergo a reversible shape change upon a liquid crystalline (LC)-isotropic phase transition. Herein, we report the synthesis of a novel LCE based on a side-chain liquid crystalline polymer (SCLCP). In contrast to known LCEs, this LCE exhibits a striking anomalous shape change. Subjecting a mechanically stretched monodomain strip to LC-disorder phase transition, both the length and width of the strip contract in isotropic phase, and both elongate in LC phase. This thermally induced behaviour is the result of a subtle interplay between the relaxation of polymer main chain oriented along the stretching direction and the disordering of side-group mesogens oriented perpendicularly to the stretching direction. This finding points out potential design of LCEs of this peculiar type and possible applications to exploit.  相似文献   

2.
Summary: We present a molecular dynamic simulation of a side chain liquid crystalline elastomer (LCE) under load. The LCE is composed of a flexible tetrafunctional diamond like network with rod-like mesogens attached to the network. As a precursor of the LC elastomer a flexible polymer network in a low molecular liquid-crystal (LC) solvent was used. The phase behavior of the LCE under uniaxial stretching up to the deformations of λ = 1.5 and 2.0 at different densities was studied. As in the non-stretched case upon density increase an isotropic to nematic phase transition occurs. However, in contrast to thermotropic side chain LC elastomers the stress induced shift transition is not observed. The stretching slightly increases the anisotropy of translational diffusion of mesogens in the nematic state. The stress-strain dependence for LCE both in the isotropic and the nematic states is obtained. Elastic modulus increases at high values of order parameter.  相似文献   

3.
Liquid crystal elastomers (LCEs) with intrinsic anisotropic strains are reversible shape‐memory polymers of interest in sensor, actuator, and soft robotics applications. Rapid gelation of LCEs is required to fix molecular ordering within the elastomer network, which is essential for directed shape transformation. A highly efficient photo‐cross‐linking chemistry, based on two‐step oxygen‐mediated thiol–acrylate click reactions, allows for nearly instant gelation of the main‐chain LCE network upon exposure to UV light. Molecular orientation from the pre‐aligned liquid crystal oligomers can be faithfully transferred to the LCE films, allowing for preprogrammed shape morphing from two to three dimensions by origami‐ (folding‐only) and kirigami‐like (folding with cutting) mechanisms. The new LCE chemistry also enables widely tunable physical properties, including nematic‐to‐ isotropic phase‐transition temperatures (TN‐I), glassy transition temperatures (Tg), and mechanical strains, without disrupting the LC ordering.  相似文献   

4.
Liquid crystal elastomers (LCEs) are anisotropic polymeric materials. When subjected to an applied stress, liquid crystalline (LC) mesogens within the elastomeric polymer network (re)orient to the loading direction. The (re)orientation during deformation results in nonlinear stress‐strain dependence (referred to as soft elasticity). Here, we uniquely explore mechanotropic phase transitions in elastomers with appreciable mesogenic content and compare these responses to LCEs in the polydomain orientation. The isotropic (amorphous) elastomers undergo significant directional orientation upon loading, evident in strong birefringence and x‐ray diffraction. Functionally, the mechanotropic displacement of the elastomers to load is also nonlinear. However, unlike the analogous polydomain LCE compositions examined here, the isotropic elastomers rapidly recover after deformation. The mechanotropic orientation of the mesogens in these materials increase the toughness of these thiol‐ene photopolymers by nearly 1300 % relative to a chemically similar elastomer prepared from wholly isotropic precursors.  相似文献   

5.
Liquid crystal elastomers (LCEs) are anisotropic polymeric materials. When subjected to an applied stress, liquid crystalline (LC) mesogens within the elastomeric polymer network (re)orient to the loading direction. The (re)orientation during deformation results in nonlinear stress‐strain dependence (referred to as soft elasticity). Here, we uniquely explore mechanotropic phase transitions in elastomers with appreciable mesogenic content and compare these responses to LCEs in the polydomain orientation. The isotropic (amorphous) elastomers undergo significant directional orientation upon loading, evident in strong birefringence and x‐ray diffraction. Functionally, the mechanotropic displacement of the elastomers to load is also nonlinear. However, unlike the analogous polydomain LCE compositions examined here, the isotropic elastomers rapidly recover after deformation. The mechanotropic orientation of the mesogens in these materials increase the toughness of these thiol‐ene photopolymers by nearly 1300 % relative to a chemically similar elastomer prepared from wholly isotropic precursors.  相似文献   

6.
To address tremendous needs for developing efficiently heat dissipating materials with lightweights, a series of liquid crystalline epoxy resins (LCEs) are designed and synthesized as thermally conductive matrix. All prepared LCEs possess epoxies at the molecular side positions and cyanobiphenyl mesogenic end groups. Based on several experimental results such as differential scanning calorimetry, polarized optical microscopy, and X‐ray diffraction, it is found that the LCEs exhibited liquid crystalline mesophases. When LCE is cured with a diamine crosslinker, the cured LCE maintains the oriented LC domain formed in the uncured state, ascribing to a presence of dipole–diploe and π–π interactions between cyanobiphenyl mesogenic end groups. Due to the anisotropic molecular orientation, the cured LCE exhibits a high thermal conductivity of 0.46 W m?1 K?1, which is higher than those of commercially available crystalline or amorphous epoxy resins. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 708–715  相似文献   

7.
刘曦阳  王晓工 《高分子学报》2017,(10):1549-1556
液晶弹性体是交联型液晶大分子,兼具液晶取向有序性和交联聚合物熵弹性等特性,在传感器、触发器、微流体装置和仿生器件等方面具有很好的应用前景.制备液晶弹性体的微结构,探索其独特的刺激响应性,是目前液晶弹性体研究的重要方向.侧链液晶弹性体的液晶相态类型取决于其液晶基元和主链的连接方式.腰接型侧链液晶弹性体倾向于形成向列型液晶相,具有较快的响应速度和形变程度,是一类独特的液晶弹性体.本文重点介绍腰接型液晶弹性体微结构(如微米柱、微米线等)的制备;利用金纳米粒子的光热转换效应,实现液晶弹性体光响应性的新途径;以及腰接型侧链液晶弹性体仿生微结构的功能性等.同时还对该领域的发展前景进行了展望.  相似文献   

8.
杨洋  张锡奇  危岩  吉岩 《高分子学报》2017,(10):1662-1667
通过高温下酯交换反应的进行,含酯键的液晶型类玻璃高分子(liquid crystalline vitrimer),能够通过简单拉伸进行取向,获得随温度变化可逆伸缩的智能材料.在目前已报道的此类主链型高分子中,酯交换剧烈发生需要的临界温度(Tv),与液晶弹性体发生可逆形变的温度(Ti,即液晶相-各向同性相转变温度)相隔较近,导致材料的使用温度范围比较窄,而且多次升降温后,取向及可逆形变会消失.为解决此问题,本文在原来体系的基础上,通过共聚合另外一种液晶基元,有效地降低了Ti,从而拓宽Ti与Tv之间的距离.这不仅使材料的使用次数明显增加,还能延长此类液晶弹性体的使用期限.  相似文献   

9.
Films of a symmetric liquid‐crystalline/isotropic block copolymer consisting of a smectic LC side‐chain polymer and polystyrene were prepared by solvent casting from solution and from the isotropic melt. By annealing the solvent‐cast film in the SA phase an oriented microphase‐separated film of lamellar morphology was obtained in which both the lamellae of the block copolymer and the smectic layers of the LC block were oriented parallel to the film surface. A lamellar morphology with perpendicular orientation of lamellae and smectic layers was generated by cooling the block copolymer from the melt.  相似文献   

10.
A liquid crystalline elastomer–carbon nanotube (LCE‐CNT) composite displays a reversible shape change property in response to light. The development of some systems such as tactile devices requires localised actuation of this material. A method is reported that combines mechanical stretching and thermal crosslinking of an LCE‐CNT for creating sufficiently well‐aligned liquid crystal units to produce localised actuation. The method demonstrates that it is feasible to optically drive a LCE‐CNT film within a localised area, since only the walls of the stretched parts of the film contain aligned LC domains.  相似文献   

11.
手征性侧链液晶高分子取向结构的研究   总被引:3,自引:0,他引:3  
用偏光显微镜,红外二色性和X 射线衍射研究了一种手征性侧链液晶高分子的相态织构和弛豫行为.偏光显微镜观察这种侧链液晶高分子冻结取向液晶态薄膜时,可观察到与剪切方向垂直的明暗相间的条带织构.红外二向色性的结果表明,取向态中侧链上的介晶基元倾向于与剪切方向垂直排列.取向和非取向膜的X射线衍射揭示了该侧链液晶高分子具有反铁电性液晶的两套反相螺旋结构.取向薄膜在液晶态的弛豫行为表明,取向作用能促进侧链高分子近晶相层状结构的生长,而且介晶基元的取向在弛豫过程中能保持下来.  相似文献   

12.
A series of cross-linked liquid crystalline polymers are prepared by graft copolymerization, and their liquid crystalline properties are characterized by DSC and POM. The results show that low levels of cross-linking do not obviously affect the phase behavior of the network polymers; in contrast, high levels of cross-linking may have more drastic influences, and liquid crystalline phases may lose, and more marked variation in phase transition will occur in materials with more direct coupling through a shorter or stiffer coupling chain between mesogenic side units and polymer backbone. At the same time, the coupling between the polymer chain and sidegroups results in stress-induced orientation in LCEs.  相似文献   

13.
The purpose of this study was to investigate the influence of cross‐linking on the thermomechanical behavior of liquid‐crystalline elastomers (LCEs). Main‐chain LCE networks were synthesized via a thiol‐acrylate Michael addition reaction. The robust nature of this reaction allowed for tailoring of the behavior of the LCEs by varying the concentration and functionality of the cross‐linker. The isotropic rubbery modulus, glass transition temperature, and strain‐to‐failure showed strong dependence on cross‐linker concentration and ranged from 0.9 MPa, 3 °C, and 105% to 3.2 MPa, 25 °C, and 853%, respectively. The isotropic transition temperature (Ti) was shown to be influenced by the functionality of the cross‐linker, ranging from 70 °C to 80 °C for tri‐ and tetra‐functional cross‐linkers. The magnitude of actuation can be tailored by controlling the amount of cross‐linker and applied stress. Actuation increased with increased applied stress and decreased with greater amounts of cross‐linking. The maximum strain actuation achieved was 296% under 100 kPa of bias stress, which resulted in work capacity of 296 kJ/m3 for the lowest cross‐linked networks. Overall, the experimental results provide a fundamental insight linking thermomechanical properties and actuation to a homogenous polydomain nematic LCE networks with order parameters of 0.80 when stretched. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 157–168  相似文献   

14.
We study the phase diagram and orientational ordering of guest liquid crystalline (LC) rods immersed in a quenched host made of a liquid crystalline polymer (LCP) matrix with mobile side chains. The LCP matrix lies below the glass transition of the polymer backbone. The side chains are mobile and can align to the guest rod molecules in a plane normal to the local LCP chain contour. A field theoretic formulation for this system is proposed and the effects of the LCP matrix on LC ordering are determined numerically. We obtain simple analytical equations for the nematic/isotropic phase diagram boundaries. Our calculation show a nematic-nematic (N/N) first order transition from a guest stabilized to a guest-host stabilized region and the possibility of a reentrant transition from a guest stabilized nematic region to a host only stabilized regime separated by an isotropic phase. A detailed study of thermodynamic variables and interactions on orientational ordering and phases is carried out and the relevance of our predictions to experiments and computer simulations is presented.  相似文献   

15.
16.
A method to prepare shape‐changing nanospheres from liquid crystalline elastomers is reported. The nanosized colloids are prepared by a miniemulsion process. During this process, colloids are prepared from a liquid crystalline (LC) main‐chain polyester and subsequently crosslinked into a nanometer‐sized LC elastomer. The ability of these LC elastomers to change their shape at the phase transition temperature from the smectic A to the isotropic phase was detected by temperature‐dependent transmission electron microscopy. The phase transition‐induced shape change leads to strongly shape anisotropic nanosized elastomer particles.

  相似文献   


17.
Mingyao Xu  Yuehua Cong 《Liquid crystals》2017,44(11):1701-1708
Novel shape recovery biodegradable liquid crystal (LC) elastomer is reported here for the first time. The method of synthesis of the shape memory biodegradable LC elastomer has been explored. During the reaction, the LC molecules are added to form LC polymers, and then cross-linking agent is added to form a cross-linked LC elastomer. The LC elastomer in this work is hydrophilic. In vitro degradation of the LC elastomer films in a buffer of pH 7.4 at 37°C shows that the LC elastomer has good degradability. The biodegradable LC elastomer exhibits liquid crystalline behaviour and has shape memory ability. Its shape memory and actuating properties also have been studied. The reversible transition from liquid crystalline phase to isotropic phase is utilised as the switching mechanism for these stimuli-responsive materials. When reheating the LC elastomer to 120°C, the shape will recover.  相似文献   

18.
A new side chain liquid crystalline polymers have been synthesized and characterized in which [geraniol-co-MMA] polymer are used as a backbone linked via polymethylene spacer to phenyl benzoate mesogenic group. The polymer exhibits enantiotropic liquid crystallinity with nematic phase and does not exhibit side chain crystallization .A clear difference between the nature of the mesophase is evidenced between [Geraniol-co-MMA] main chain and methacrylate polymers .The LC polymer exhibit glass transition at 40 °C. In a comparative analysis, we discuss the relevance of polymer backbone in the synthesis of side chain liquid crystalline polymers.  相似文献   

19.
A mesogen‐jacketed liquid crystalline polymer (MJLCP) containing triphenylene (Tp) moieties in the side chains with 12 methylene units as spacers (denoted as PP12V) was synthesized. Its liquid crystalline (LC) phase behavior was studied with a combination of solution 1H NMR, solid‐state NMR, gel permeation chromatography, thermogravimetric analysis, polarized light microscopy, differential scanning calorimetry, and one‐ and two‐dimensional wide‐angle X‐ray diffraction. By simply varying the temperature, two ordered nanostructures at sub‐10‐nm length scales originating from two LC building blocks were obtained in one polymer. The low‐temperature phase of the polymer is a hexagonal columnar phase (ΦH, a = 2.06 nm) self‐organized by Tp discotic mesogens. The high‐temperature phase is a nematic columnar phase with a larger dimension (a′ = 4.07 nm) developed by the rod‐like supramolecular mesogen—the MJLCP chain as a whole. A re‐entrant isotropic phase is found in the medium temperature range. Partially homeotropic alignment of the polymer can be achieved when treated with an electric field, with the polymer in the ΦH phase developed by the Tp moieties. The incorporation of Tp moieties through relatively long spacers (12 methylene units) disrupts the ordered packing of the MJLCP at low temperatures, which is the first case for main‐chain/side‐chain combined LC polymers with MJLCPs as the main‐chain LC building block to the best of our knowledge. The relationship of the molecular structure and the novel phase behavior of PP12V has implications in the design of LC polymers containing nanobuilding blocks toward constructing ordered nanostructures at different length scales. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 295–304  相似文献   

20.
Two LC side‐group poly(methacrylates) were synthesized, and their melt dynamics were compared with each other and a third, main‐chain side‐group combined LC polymer. A new route was developed for the synthesis of the poly(methacrylate) polymers which readily converts relatively inexpensive perdeuteromethyl methacrylate to other methacrylate monomers. Self‐diffusion data was obtained through the use of forward recoil spectrometry, while modulus and viscosity data were measured using rotational rheometers in oscillatory shear. Diffusion coefficients and complex viscosity were compared to previous experiments on liquid crystal polymers of similar architecture to determine the effect of side‐group interdigitation and chain packing on center of mass movement. The decyl terminated LC side‐group polymer possessed an interdigitated smectic phase and a sharp discontinuity in the self‐diffusion behavior at the clearing transition. In contrast, the self‐diffusion behavior of the methyl terminated LC side‐group polymer, which possessed head‐to‐head side‐group packing, was seemingly unaffected by the smectic–nematic and nematic–isotropic phase transitions. The self‐diffusion coefficients of both polymers were relatively insensitive to the apparent glass transition. The presence of moderately fast sub‐Tg chain motion was supported by rheological measurements that provided further evidence of considerable molecular motion below Tg. The complex phase behavior of the combined main‐chain side‐group polymer heavily influenced both the self‐diffusion and rheological behavior. Differences between the self‐diffusion and viscosity data of the main‐chain side‐group polymer could be interpreted in terms of the defect structure. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 405–414, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号