首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sample pretreatment method based on the combination of a three‐phase solvent extraction system and deep eutectic solvent‐based dispersive liquid–liquid microextraction has been introduced for the extraction of four organochlorine pesticides in cocoa samples before their determination by gas chromatography‐electron capture detection. A mixture of sodium chloride, acetonitrile, and potassium hydroxide solution is added to cocoa bean or powder. After vortexing and centrifugation of the mixture, the collected upper phase (acetonitrile) is removed and mixed with a few microliters of N,N‐diethanol ammonium chloride: pivalic acid deep eutectic solvent. Then it is rapidly injected into deionized water and a cloudy solution is obtained. Under optimum conditions, the limits of detection and quantification were found to be 0.011‐0.031 and 0.036‐0.104 ng/g, respectively. The obtained extraction recoveries varied between 74 and 92%. Also, intra‐ (n = 6) and interday (n = 4) precisions were less than or equal to 7.1% for the studied pesticides at a concentration of 0.3 ng/g of each analyte. The suggested method was applied to determine the studied organochlorine pesticide residues in various cocoa powders and beans gathered from groceries in Tabriz city (Iran) and aldrin and dichlobenil were found in some of them.  相似文献   

2.
In this study, a green mode of solidification of floating organic droplet – based dispersive liquid–liquid microextraction has been developed for the extraction of 16 polycyclic aromatic hydrocarbons from honey samples before their determination by gas chromatography–mass spectrometry. In this method, an appropriate volume of menthol:decanoic acid deep eutectic solvent (as an extraction solvent) is added on a sugar cube (as a disperser agent). In the following, the cube is released into the diluted honey sample placed in a tube. After manual shaking a cloudy state is obtained as a result of dispersing the extraction solvent droplets throughout the sample solution and the analytes are extracted into them. After placing the tube in an ice bath, the droplet of the extractant is solidified on the top of the solution. This drop is taken and after dissolving in acetonitrile, an aliquot of the solution is injected into the separation system. Under optimum conditions, the suggested approach had high extraction recoveries (76–93%) and enrichment factors (380–465), low limits of detection (14–52 ng/kg) and quantification (47–173 ng/kg), and satisfactory repeatability (relative standard deviation ≤ 9%).  相似文献   

3.
We present a novel dispersive liquid–liquid microextraction method based on the solidification of deep eutectic solvent coupled with high‐performance liquid chromatography with a variable‐wavelength detection for the detection of five benzoylureas in real water samples. In this work, a green solvent consisting of 1‐octyl‐3‐methylimidazolium chloride and 1‐dodecanol was used as an extraction solvent, yielding the advantages of material stability, low density, and a suitable freezing point near room temperature. Parameters that significantly affect extraction efficiency were optimized by the one‐factor‐at‐a‐time approach. Under optimal conditions, the recoveries of five target compounds were obtained ranging from 87.39 to 98.05% with correlation coefficients ranging from 0.9994 to 0.9997 for pure water. The limits of detection were in the range of 0.09–0.16 μg/L. The enrichment factors were in the range of 171–188. Linearities were achieved in the range of 0.5–500 μg/L. The proposed method was successfully applied to determine benzoylureas in environmental water samples with a satisfactory recovery of approximately 81.38–97.67%.  相似文献   

4.
A homogeneous liquid‐liquid extraction performed in narrow tube coupled to in–syringe‐dispersive liquid‐liquid microextraction based on deep eutectic solvent has been developed for the extraction of six herbicides from tea samples. In this method, sodium chloride as a separation agent is filled into the narrow tube and the tea sample is placed on top of the salt. Then a mixture of deionized water and deep eutectic solvent (water miscible) is passed through the tube. In this procedure, the deep eutectic solvent is realized as tiny droplets in contact with salt. By passing the droplets from the tea layer placed on the salt layer, the analytes are extracted into them. After collecting the solvent as separated layer, it is mixed with another deep eutectic solvent (choline chloride/butyric acid) and the mixture is dispersed into deionized water placed in a syringe. After adding acetonitrile to break up the cloudy state, the collected organic phase is injected into gas chromatography‐mass spectrometry. Under optimal conditions, limits of detection and quantification in the ranges of 2.6–8.4 and 9.7–29 ng/kg, respectively, were obtained. The extraction recoveries and enrichment factors in the ranges of 70–89% and 350–445 were obtained, respectively.  相似文献   

5.
In recent years, hydrophobic deep eutectic solvents as new generation of green solvents have attracted wide attention in liquid microextraction technique. In this article, four hydrophobic deep eutectic solvents composed of trioctylmethylammonium chloride and oleic acid were designed and prepared firstly. Combined with high‐performance liquid chromatography, these deep eutectic solvents were used as an extraction solvent in vortex‐assisted dispersive liquid–liquid microextraction for the selective enrichment and indirect determination of trace nitrite from real water and biological samples. This method is based on the diazotization‐coupling reaction of nitrite with p‐nitroaniline and diphenylamine in acidic water, and then the nitrite is quantified indirectly by measuring the obtained azo compounds. Some factors influencing the extraction efficiency, including the reaction and extraction conditions, were investigated. Under the optimized conditions, the method has a linear range of 1–300 μg/L with a correlation coefficient of 0.9924, limit of detection of 0.2 μg/L, limit of quantitation of 1 μg/L, intraday and interday relative standard deviations of 4.0 and 6.0%. This method was successfully applied in determination of nitrite from three environmental water and two biological samples with the recovery in the range of 90.5–115.2%. In addition, these results were well agreement with those obtained by the conventional Griess method.  相似文献   

6.
Deep eutectic solvents are considered as new and green solvents that can be widely used in analytical chemistry such as microextraction. In the present work, a new dl‐ menthol‐based hydrophobic deep eutectic solvent was synthesized and used as extraction solvents in an air‐assisted dispersive liquid–liquid microextraction method for preconcentration and extraction of benzophenone‐type UV filters from aqueous samples followed by high‐performance liquid chromatography with diode array detection. In an experiment, the deep eutectic solvent formed by dl‐ menthol and decanoic acid was added to an aqueous solution containing the UV filters, and then the mixture was sucked up and injected five times by using a glass syringe, and a cloudy state was achieved. After extraction, the solution was centrifuged and the upper phase was subjected to high‐performance liquid chromatography for analysis. Various parameters such as the type and volume of the deep eutectic solvent, number of pulling, and pushing cycles, solution pH and salt concentration were investigated and optimized. Under the optimum conditions, the developed method exhibited low limits of detection and limits of quantitation, good linearity, and precision. Finally, the proposed method was successfully applied to determine the benzophenone‐type filters in environmental water samples with relative recoveries of 88.8–105.9%.  相似文献   

7.
A simple, rapid, efficient, and environmentally friendly pretreatment based on a low‐density solvent based dispersive liquid–liquid microextraction was developed for determining trace levels of 17 organochlorine pesticides in snow. The parameters affecting the extraction efficiency, such as the type and volume of the extraction and dispersive solvents, extraction time, and salt content, were optimized. The optimized conditions yielded a good performance, with enrichment factors ranging from 271 to 474 and recoveries ranging from 71.4 to 114.5% and relative standard deviations between 1.6 and 14.8%. The detection limits, calculated as three times the signal‐to‐noise ratio, ranged from 0.02 to 0.11 μg/L. The validated method was used to successfully analyze 17 analytes in snow water samples, overcoming the drawbacks of some existing low‐density solvent liquid microextraction methods, which require special devices, large volumes of organic solvents, or complicated operation procedures.  相似文献   

8.
In the present study, a new extraction method based on a three–phase system, liquid–liquid–liquid extraction, followed by dispersive liquid–liquid microextraction has been developed and validated for the extraction and preconcentration of three commonly prescribed tricyclic antidepressant drugs – amitriptyline, imipramine, and clomipramine – in human plasma prior to their analysis by gas chromatography–flame ionization detection. The three phases were an aqueous phase (plasma), acetonitrile and n–hexane. The extraction mechanism was based on the different affinities of components of the biological sample (lipids, fatty acids, pharmaceuticals, inorganic ions, etc.) toward each of the phases. This provided high selectivity toward the analytes since most interferences were transferred into n–hexane. In this procedure, a homogeneous solution of the aqueous phase (plasma) and acetonitrile (water–soluble extraction solvent) was broken by adding sodium sulfate (as a phase separating agent) and the analytes were extracted into the fine droplets of the formed acetonitrile. Next, acetonitrile phase was mixed with 1,2–dibromoethane (as a preconcentration solvent at microliter level) and then the microextraction procedure mentioned above was performed for further enrichment of the analytes. Under the optimum extraction conditions, limits of detection and lower limits of quantification for the analytes were obtained in the ranges of 0.001–0.003 and 0.003–0.010 μg mL−1, respectively. The obtained extraction recoveries were in the range of 79–98%. Intra– and inter–day precisions were < 7.5%. The validated method was successfully applied for determination of the selected drugs in human plasma samples obtained from the patients who received them.  相似文献   

9.
In this study, a new two–step extraction procedure based on the combination of a modified quick, easy, cheap, effective, rugged, and safe extraction method with a deep eutectic solvent based microwave‐assisted dispersive liquid–liquid microextraction has been developed for the extraction of multiclass pesticides in tomato samples before their analysis by gas chromatography with flame ionization detection. In this method, initially, an aliquot of tomato is crushed and diluted with deionized water. The mixture is then passed through a filter paper and its residue and aqueous phase are separated. Afterwards, acetonitrile as an extraction/disperser solvent is passed through the filter paper containing the refuse. The analytes remained in the refuse are extracted into the acetonitrile and then the obtained extract is mixed with a deep eutectic solvent. The obtained mixture is injected into the tomato juice and placed in a microwave oven for 15 s. Consequently, a cloudy state is formed and the extractant containing the analytes are sedimented at the bottom of the tube after centrifugation. Finally, 1 μL of the sedimented phase is removed and injected into the separation system. Under the optimum conditions, limits of detection and quantification were in the ranges of 0.42–0.74 and 1.4–2.5 ng/g, respectively.  相似文献   

10.
A new simple and rapid dispersive liquid–liquid microextraction method has been developed for the extraction and analysis of organochlorine pesticides (OCPs) in water samples. The method is based on the solidification of a floating organic drop (DLLME-SFO) and is combined with gas chromatography/electron capture detection (GC/ECD). Very little solvent is required in this method. The disperser solvent (200 μL acetonitrile) containing 10 μL hexadecane (HEX) is rapidly injected by a syringe into the 5.0 mL water sample. After centrifugation, the fine HEX droplets (6 ± 0.5 μL) float at the top of the screw-cap test tube. The test tube is then cooled in an ice bath. After 5 min, the HEX solvent solidifies and is then transferred into a conical vial, where it melts quickly at room temperature, and 1 μL of it is injected into a gas chromatograph for analysis. Under optimum conditions, the enrichment factors and extraction recoveries are high and range between 37–872 and 82.9–102.5%, respectively. The linear range is wide (0.025–20 μg L−1), and the limits of detection are between 0.011 and 0.11 μg L−1 for most of the analytes. The relative standard deviation (RSD) for 1 μg L−1 of OCPs in water was in the range of 5.8–8.8%. The performance of the method was gauged by analyzing samples of lake and tap water.  相似文献   

11.
Stir bar sorptive extraction (SBSE) combined with dispersive liquid–liquid microextraction (DLLME) has been developed as a new approach for the extraction of six triazole pesticides (penconazole, hexaconazole, diniconazole, tebuconazole, triticonazole and difenconazole) in aqueous samples prior to GC‐flame ionization detection (GC‐FID). A series of parameters that affect the performance of both steps were thoroughly investigated. Under optimized conditions, aqueous sample was stirred using a stir bar coated with octadecylsilane (ODS) and then target compounds on the sorbent (stir bar) were desorbed with methanol. The extract was mixed with 25 μL of 1,1,2,2‐tetrachloroethane and the mixture was rapidly injected into sodium chloride solution 30% w/v. After centrifugation, an aliquot of the settled organic phase was analyzed by GC‐FID. The methodology showed broad linear ranges for the six triazole pesticides studied, with correlation coefficients higher than 0.993, lower LODs and LOQs between 0.53–24.0 and 1.08–80.0 ng/mL, respectively, and suitable precision (RSD < 5.2%). Moreover, the developed methodology was applied for the determination of target analytes in several samples, including tap, river and well waters, wastewater (before and after purification), and grape and apple juices. Also, the presented SBSE‐DLLME procedure followed by GC‐MS determination was performed on purified wastewater. Penconazole, hexaconazole and diniconazole were detected in the purified wastewater that confirmed the obtained results by GC‐FID determination. In short, by coupling SBSE with DLLME, advantages of two methods are combined to enhance the selectivity and sensitivity of the method. This method showed higher enrichment factors (282–1792) when compared with conventional methods of sample preparation to screen pesticides in aqueous samples.  相似文献   

12.
A green and efficient sample preparation method using a deep eutectic solvent‐based ultrasounds‐assisted dispersive liquid–liquid microextraction with solidification of the aqueous phase followed by high performance liquid chromatography analysis was developed for preconcentration and determination of heavy metals in environmental samples. In the proposed method, a novel, low density deep eutectic solvent was prepared by mixing trihexyl(tetradecyl)phosphonium chloride and thiosalicylic acid at a molar ratio of 1:2 and used both as an extractant and complexing agent. Ultrasound was used to disperse the extractant in the aqueous phase of the sample. Then, the phases were separated by centrifugation, after which the aqueous phase was frozen and the surface extractant phase was dissolved in a small volume of acetonitrile and subjected to liquid chromatographic analysis. The proposed method provided precisions (relative standard deviation, n = 5) in the range of 2.6–4.7%. The limit of detection were 0.05, 0.13, 0.06, and 0.11 µg/L for Pb(II), Cd(II), Co(II), Ni(II), respectively. The enhancement factors were equal to 154, 159, 162, and 158 for lead(II), cadmium(II), cobalt(II), and nickel(II), respectively. The accuracy of the proposed method was evaluated using certified reference materials (CA011b – hard drinking water, NIST 1643e – trace elements in water, TMRAIN‐04 – simulated rain sample).  相似文献   

13.
SPE joined with dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME‐SFO) as a novel technique combined with GC with electron‐capture detection has been developed as a preconcentration technique for the determination of organochlorine pesticides (OCPs) in water samples. Aqueous samples were loaded onto multiwalled carbon nanotubes as sorbent. After the elution of the desired compounds from the sorbent by using acetone, the DLLME‐SFO technique was performed on the obtained solution. Variables affecting the performance of both steps such as sample solution flow rate, breakthrough volume, type and volume of the elution, type and volume of extraction solvent and salt addition were studied and optimized. The new method provided an ultra enrichment factor (8280–28221) for nine OCPs. The calibration curves were linear in the range of 0.5–1000 ng/L, and the LODs ranged from 0.1–0.39 ng/L. The RSD, for 0.01 μg/L of OCPs, was in the range of 1.39–13.50% (n = 7). The recoveries of method in water samples were 70–113%.  相似文献   

14.
建立了深共熔溶剂-高效液相色谱联用提取测定环境水样中3种药品和个人护理品(PPCPs)的方法。通过优化前处理条件,3种PPCPs(氯霉素、氯苯甘醚和萘普生)利用氯化胆碱-乙二醇深共熔溶剂为提取剂,经超声功率120 W下超声波提取5 min,离心转速9000 r/min下离心10 min富集提取。采用外标法定量分析,在5.0~200.0 mg/L范围内线性关系良好,相关系数r≥0.9998。3种环境水样中PPCPs的回收率为81.4%~94.8%,相对标准偏差分别为1.5%,0.4%和0.3%。氯霉素、氯苯甘醚和萘普生的方法检出限(LODs)分别为0.9,3.3,1.6 mg/L,定量限(LOQs)分别为3.1,12.2,5.0 mg/L。方法能够满足环境水样中3种PPCPs的检测需求。  相似文献   

15.
In this study, a gas‐assisted dispersive liquid‐phase microextraction method using a deep eutectic solvent as the extraction solvent combined with gas chromatography and flame ionization detection was developed for the extraction and determination of some pesticide residues in vegetable and fruit juice samples. In this method, choline chloride and 4‐chlorophenol at a molar ratio of 1:2 were mixed. By heating and vortexing, a clear, water‐immiscible, and homogeneous liquid was formed. The obtained deep eutectic solvent was added to an aqueous solution of the analytes in a conical test tube. Air was bubbled into the aqueous solution and a cloudy solution was obtained. During this step, the analytes were extracted into the fine droplets of the extraction solvent. After centrifugation, an aliquot of the settled phase was injected into the separation system. Under the optimum extraction conditions, enrichment factors, and extraction recoveries were obtained in the ranges of 247–355 and 49–71%, respectively. The obtained values for the limits of detection and quantification were in the ranges of 0.24–1.4 and 0.71–4.2 μg/L, respectively. The proposed method is simple, fast, efficient, and inexpensive.  相似文献   

16.
A facile headspace single drop microextraction method was developed using deep eutectic solvent‐based magnetic bucky gel as the extraction solvent for the first time. The hydrophobic magnetic bucky gel was formed by combining choline chloride/chlorophenol deep eutectic solvent and magnetic multiwalled carbon nanotube nanocomposite. Magnetic susceptibility, high viscosity, high sorbing ability, and tunable extractability of organic analytes are the desirable advantages of the prepared gel. Using a rod magnet as a suspensor in combination with the magnetic susceptibility of the prepared gel resulted in a highly stable droplet. This stable droplet eliminated the possibility of drop dislodgement. The prepared droplet made it possible to complete the extraction process in high temperatures and elevated agitation rates. Furthermore, using larger micro‐droplet volumes without any operational problems became possible. These facts resulted in shorter sample preparation time, higher sensitivity of the method, and lower detection limits. Under the optimized conditions, an enrichment factor of 520–587, limit of detection of 0.05–0.90 ng/mL, and linearity range of 0.2–2000 ng/mL (coefficient of determination = 0.9982–0.9995) were obtained. Relative standard deviations were < 10%. This method was successfully coupled with gas chromatography and used for the determination of benzene, toluene, ethylbenzene, and xylene isomers as harmful volatile organic compounds in water and urine samples.  相似文献   

17.
Sodium sulfate‐induced deep eutectic solvent–based solidification of floating organic droplets–dispersive liquid phase microextraction was developed prior to gas chromatography–mass spectrometry. In this method, a mixture of Na2SO4 solution (as phase separation agent and disperser) containing menthol–decanoic acid was rapidly injected into an alkaline aqueous solution containing Na2SO4. The solution was placed in an ice bath and the menthol–decanoic acid solvent was solidified on the surface of the solution. Under the optimal conditions, the enrichment factors and extraction recoveries were 122–147 and 74–89%, respectively. Finally, an aliquot of the collected organic phase was removed and mixed with acetonitrile and injected into the separation system. The limits of detection and lower limits of quantification were obtained at the ranges of 13–25 and 24–41 ng L?1, respectively. The relative standard deviations of the proposed method were ≤11% for intra‐ and inter‐day precisions at four concentrations.  相似文献   

18.
In situ synthesis of a deep eutectic solvent and homogeneous liquid–liquid microextraction performed in a narrow bore tube was developed for efficient extraction of irgaphos 168 and irganox 1010 in doogh and water samples packed in polypropylene packages. First, pH of the aqueous sample solutions containing the analytes is adjusted at 9. Then a hydrogen bond acceptor (choline chloride) and a hydrogen bond donor (oleic acid) are dissolved in the solution and vortexed to obtain a homogeneous solution. The solution is filled into a narrow bore tube, in which its bottom was clogged by a septum. Then hydrochloric acid solution is injected into the solution by a syringe. The tube is placed in an ultrasonic bath. During this step, the droplets of choline chloride:oleic acid deep eutectic solvent are produced. The method indicated high enrichment factor (435 for irgaphos 168 and 488 for irganox 1010), low limits of detection (0.03 and 0.09 ng/mL for irgaphos 168 and irganox 1010, respectively) and quantification (0.13 and 0.29 ng/mL for irgaphos 168 and irganox 1010), good recovery (74 and 83% for irgaphos 168 and irganox 1010, respectively), and satisfactory repeatabilities (relative standard deviations ≤12%) can be obtained using the developed method.  相似文献   

19.
A green, efficient, simple and sensitive pre‐concentration method has been developed for the determination of vanadium(V) in foodstuffs using deep eutectic solvent–ultrasonic‐assisted dispersive liquid–liquid microextraction. In the developed procedure, the extraction of vanadium(V) was achieved using 2‐hydroxy‐3‐methoxybenzaldehyde thiosemicarbazone as a chelating agent, choline chloride–phenol as extracting solvent and tetrahydrofuran as dispersive solvent. Vanadium(V) concentration was measured using electrothermal atomic absorption spectrometry. Various analytical parameters including pH, type and molar ratio of deep eutectic solvent, ultrasonication time and amount of ligand were studied. A multivariate study was carried out for optimization of the variables. The pre‐concentration factor was calculated as 50. Under optimal conditions, limit of detection, limit of quantification and relative standard deviation were calculated as 0.025 μg l?1, 0.175 μg l?1 and 3.4%, respectively. The accuracy of the procedure was confirmed using certified reference materials and standard addition method. The obtained results confirm adequate recoveries for vanadium(V) (>96%). This technique was fruitfully applied for determination of vanadium in foodstuffs.  相似文献   

20.
The determination of 15 pyrethroids in soil and water samples was carried out by gas chromatography with mass spectrometry. Compounds were extracted from the soil samples (4 g) using solid–liquid extraction and then salting‐out assisted liquid–liquid extraction. The acetonitrile phase obtained (0.8 mL) was used as a dispersant solvent, to which 75 μL of chloroform was added as an extractant solvent, submitting the mixture to dispersive liquid–liquid microextraction. For the analysis of water samples (40 mL), magnetic solid‐phase extraction was performed using nanocomposites of magnetic nanoparticles and multiwalled carbon nanotubes as sorbent material (10 mg). The mixture was shaken for 45 min at room temperature before separation with a magnet and desorption with 3 mL of acetone using ultrasounds for 5 min. The solvent was evaporated and reconstituted with 100 μL acetonitrile before injection. Matrix‐matched calibration is recommended for quantification of soil samples, while water samples can be quantified by standards calibration. The limits of detection were in the range of 0.03–0.5 ng/g (soil) and 0.09–0.24 ng/mL (water), depending on the analyte. The analyzed environmental samples did not contain the studied pyrethroids, at least above the corresponding limits of detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号