首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
One of the major drawbacks of organic‐dye‐modified self‐assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13‐bis(triisopropylsilylethynyl)pentacene–alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time‐resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface.  相似文献   

2.
Excitonic processes in semiconductors open up the possibility for pursuing photocatalytic organic synthesis. However, the insufficient spin relaxation and robust nonradiative decays in semiconductors place restrictions on both quantum yield and selectivity of these reactions. Herein, by taking polymeric carbon nitride (PCN)/acetone as a prototypical system, we propose that extrinsic aliphatic ketones can serve as molecular co‐catalysts for promoting spin‐flip transition and suppressing non‐radiative energy losses. Spectroscopic investigations indicate that hot excitons in PCN can be transferred to ketones, while triplet excitons in ketones can be transferred to PCN. As such, the PCN/ketone systems exhibit considerable triplet‐exciton accumulation and extended visible‐light response, leading to excellent performance in exciton‐based photocatalysis, such as singlet oxygen generation. This work provides a fundamental understanding of energy harvesting in semiconductor/molecule systems, and paves the way for optimizing exciton‐based photocatalysis via molecular co‐catalyst design.  相似文献   

3.
Photooxidation of alkanes by dioxygen occurred under visible light irradiation of 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ) which acts as a super photooxidant. Solvent‐free hydroxylation of cyclohexane and alkanes is initiated by electron transfer from alkanes to the singlet and triplet excited states of DDQ to afford the corresponding radical cations and DDQ??, as revealed by femtosecond laser‐induced transient absorption measurements. Alkane radical cations readily deprotonate to produce alkyl radicals, which react with dioxygen to afford alkylperoxyl radicals. Alkylperoxyl radicals abstract hydrogen atoms from alkanes to yield alkyl hydroperoxides, accompanied by regeneration of alkyl radicals to constitute the radical chain reactions, so called autoxidation. The radical chain is terminated in the bimolecular reactions of alkylperoxyl radicals to yield the corresponding alcohols and ketones. DDQ??, produced by the photoinduced electron transfer from alkanes to the excited state of DDQ, disproportionates with protons to yield DDQH2.  相似文献   

4.
To harvest energy from the near‐infrared (near‐IR) and infrared (IR) regions of the electromagnetic spectrum, which constitutes nearly 70 % of the solar radiation, there is a great demand for near‐IR and IR light‐absorbing sensitizers that are capable of undergoing ultrafast photoinduced electron transfer when connected to a suitable electron acceptor. Towards achieving this goal, in the present study, we report multistep syntheses of dyads derived from structurally modified BF2‐chelated azadipyrromethene (ADP; to extend absorption and emission into the near‐IR region) and fullerene as electron‐donor and electron‐acceptor entities, respectively. The newly synthesized dyads were fully characterized based on optical absorbance, fluorescence, geometry optimization, and electrochemical studies. The established energy level diagram revealed the possibility of electron transfer either from the singlet excited near‐IR sensitizer or singlet excited fullerene. Femtosecond and nanosecond transient absorption studies were performed to gather evidence of excited state electron transfer and to evaluate the kinetics of charge separation and charge recombination processes. These studies revealed the occurrence of ultrafast photoinduced electron transfer leading to charge stabilization in the dyads, and populating the triplet states of ADP, benzanulated‐ADP and benzanulated thiophene‐ADP in the respective dyads, and triplet state of C60 in the case of BF2‐chelated dipyrromethene derived dyad during charge recombination. The present findings reveal that these sensitizers are suitable for harvesting light energy from the near‐IR region of the solar spectrum and for building fast‐responding optoelectronic devices operating under near‐IR radiation input.  相似文献   

5.
Irreversible photooxidation based on N–O bond fragmentation is demonstrated for N‐methoxyheterocycles in both the singlet and triplet excited state manifolds. The energetic requirements for bond fragmentation are studied in detail. Bond fragmentation in the excited singlet manifold is possible for ππ* singlet states with energies significantly larger than the N–O bond dissociation energy of ca 55 kcal mol?1. For the * triplet states, N–O bond fragmentation does not occur in the excited state for orbital overlap and energetic reasons. Irreversible photooxidation occurs in the singlet states by bond fragmentation followed by electron transfer. Irreversible photooxidation occurs in the triplet states via bimolecular electron transfer to the donor followed by bond fragmentation. Using these two sensitization schemes, donors can be irreversibly oxidized with oxidation potentials ranging from ca 1.6–2.2 V vs SCE. The corresponding N‐ethylheterocycles are characterized as conventional reversible photooxidants in their triplet states. The utility of these sensitizers is demonstrated by irreversibly generating the guanosine radical cation in buffered aqueous solution.  相似文献   

6.
During the maturation of red wines, the anthocyanins of grapes are transformed into pyranoanthocyanins, which possess a pyranoflavylium cation as their basic chromophore. Photophysical properties of the singlet and triplet excited states of a series of synthetic pyranoflavylium cations were determined at room temperature in acetonitrile solution acidified with 0.10 mol dm?3 trifluoroacetic acid (TFA, to inhibit competitive excited state proton transfer) and at 77 K in a rigid TFA‐acidified isopropanol glass. In solution, the triplet states of these pyranoflavylium cations are efficiently quenched by molecular oxygen, resulting in sensitized formation of singlet oxygen, as confirmed by direct detection of the triplet‐state decay by laser flash photolysis and of singlet oxygen monomol emission in the near infrared. The strong visible light absorption, the relatively small singlet‐triplet energy differences, the excited state redox potentials and the reasonably long lifetimes of pyranoflavylium triplet states in the absence of molecular oxygen suggest that they might be useful as triplet sensitizers and/or as cationic redox initiators in polar aprotic solvents like acetonitrile.  相似文献   

7.
The decomposition of 1,2‐dioxetanone into a CO2 molecule and into an excited state formaldehyde molecule was studied in condensed phase, using a density functional theory approach. Singlet and triplet ground and excited states were all included in the calculations. The calculations revealed a novel mechanism for the chemiluminescence of this compound. The triplet excitation can be explained by two intersystem crossings (ISCs) with the ground state, while the singlet excitation can be accounted by an ISC with the triplet state. The experimentally verified small excitation yield can then be explained by the presence of an energy barrier present in the potential energy surface of the triplet excited state, which will govern both triplet and singlet excitation. It was also found that the triplet ground state interacts with both the triplet excited and singlet ground states. A MPWB1K/mPWKCIS approach provided results in agreement with the existent literature. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Developing strong visible‐light‐absorbing (SVLA) earth‐abundant photosensitizers (PSs) for significantly improving the utilization of solar energy is highly desirable, yet it remains a great challenge. Herein, we adopt a through‐bond energy transfer (TBET) strategy by bridging boron dipyrromethene (Bodipy) and a CuI complex with an electronically conjugated bridge, resulting in the first SVLA CuI PSs ( Cu‐2 and Cu‐3 ). Cu‐3 has an extremely high molar extinction coefficient of 162 260 m ?1 cm?1 at 518 nm, over 62 times higher than that of traditional CuI PS ( Cu‐1 ). The photooxidation activity of Cu‐3 is much greater than that of Cu‐1 and noble‐metal PSs (Ru(bpy)32+ and Ir(ppy)3+) for both energy‐ and electron‐transfer reactions. Femto‐ and nanosecond transient absorption and theoretical investigations demonstrate that a “ping‐pong” energy‐transfer process in Cu‐3 involving a forward singlet TBET from Bodipy to the CuI complex and a backward triplet‐triplet energy transfer greatly contribute to the long‐lived and Bodipy‐localized triplet excited state.  相似文献   

9.
New C60 and C70 fullerene dyads formed with 4‐amino‐1,8‐naphthalimide chromophores have been prepared by the Bingel cyclopropanation reaction. The resulting monoadducts were investigated with respect to their fluorescence properties (quantum yields and lifetimes) to unravel the role of the charge‐transfer naphthalimide chromophore as a light‐absorbing antenna and excited‐singlet‐state sensitizer of fullerenes. The underlying intramolecular singlet–singlet energy transfer (EnT) process was fully characterized and found to proceed quantitatively (ΦEnT≈1) for all dyads. Thus, these conjugates are of considerable interest for applications in which fullerene excited states have to be created and photonic energy loss should be minimized. In polar solvents (tetrahydrofuran and benzonitrile), fluorescence quenching of the fullerene by electron transfer from the ground‐state aminonaphthalimide was postulated as an additional path.  相似文献   

10.
2‐Ureido‐4(1H)‐pyrimidinone‐bridged ferrocene–fullerene assembly I is designed and synthesized for elaborating the photoinduced electron‐transfer processes in self‐complementary quadruply hydrogen‐bonded modules. Unexpectedly, steady‐state and time‐resolved spectroscopy reveal an inefficient electron‐transfer process from the ferrocene to the singlet or triplet excited state of the fullerene, although the electron‐transfer reactions are thermodynamically feasible. Instead, an effective intra‐assembly triplet–triplet energy‐transfer process is found to be operative in assembly I with a rate constant of 9.2×105 s?1 and an efficiency of 73 % in CH2Cl2 at room temperature.  相似文献   

11.
The main photophysical properties of a series of recently synthetized 1,2‐ and 1,3‐squaraines, including absorption electronic spectra, singlet‐triplet energy gaps, and spin‐orbit matrix elements, have been investigated by means of density functional theory (DFT) and time‐dependent DFT approaches. A benchmark of three exchange‐correlation functionals has been performed in six different solvent environments. The investigated 1,2 squaraines have been found to possess two excited triplet states (T1 and T2) that lie below the energy of the excited singlet one (S1). The radiationless intersystem spin crossing efficiency is thus enhanced in both the studied systems and both the transitions could contribute to the excited singlet oxygen production. Moreover, they have a singlet‐triplet energy gap higher than that required to generate the cytotoxic singlet oxygen species. According to our data, these compounds could be used in photodynamic therapy applications that do not require high tissue penetration. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
The controllable tuning of the excited states in a series of phosphine‐oxide hosts ( DPExPOCzn ) was realized through introducing carbazolyl and diphenylphosphine‐oxide (DPPO) moieties to adjust the frontier molecular orbitals, molecular rigidity, and the location of the triplet excited states by suppressing the intramolecular interplay of the combined multi‐insulating and meso linkage. On increasing the number of substituents, simultaneous lowering of the first singlet energy levels (S1) and raising of the first triplet energy levels (T1, about 3.0 eV) were achieved. The former change was mainly due to the contribution of the carbazolyl group to the HOMOs and the extended conjugation. The latter change was due to an enhanced molecular rigidity and the shift of the T1 states from the diphenylether group to the carbazolyl moieties. This kind of convergent modulation of excited states not only facilitates the exothermic energy transfer to the dopants in phosphorescent organic light‐emitting diodes (PHOLEDs), but also realizes the fine‐tuning of electrical properties to achieve the balanced carrier injection and transportation in the emitting layers. As the result, the favorable performance of blue‐light‐emitting PHOLEDs was demonstrated, including much‐lower driving voltages of 2.6 V for onset and 3.0 V at 100 cd m?2, as well as a remarkably improved E.Q.E. of 12.6 %.  相似文献   

13.
Previous studies of perylenediimides (PDIs) mostly utilized the lowest singlet excited state S1. Generation of a triplet excited state (T1) in PDIs is important for applications ranging from photodynamic therapy to photovoltaics; however, it remains a formidable task. Herein, we developed a heavy‐atom‐free strategy to prompt the T1←S1 intersystem crossing (ISC) by introducing electron‐donating aryl (Ar) groups at the head positions of an electron‐deficient perylenediimide (PDI) core. We found that the ISC efficiency increases from 8 to 54 % and then to 86 % by increasing the electron‐donating ability of head‐substituted aryl groups from phenyl (p‐PDI) to methoxyphenyl (MeO‐PDI) and then to methylthioxyphenyl (MeS‐PDI). By enhancing the intramolecular charge‐transfer (ICT) interaction from p‐PDI to MeO‐PDI, and then to MeS‐PDI, singlet oxygen generation via energy‐transfer reactions from T1 of PDIs to 3O2 was demonstrated with the highest yield of up to 80 %. These results provide guidelines for developing new triplet‐generating PDIs and related rylene diimides for optoelectronic applications.  相似文献   

14.
《Chemphyschem》2003,4(12):1308-1315
The low‐energy regions of the singlet→singlet, singlet→triplet, and triplet→triplet electronic spectra of 2,2′‐bithiophene are studied using multiconfigurational second‐order perturbation theory (CASPT2) and extended atomic natural orbitals (ANO) basis sets. The computed vertical, adiabatic, and emission transition energies are in agreement with the available experimental data. The two lowest singlet excited states, 11Bu and 21Bu, are computed to be degenerate, a novel feature of the system to be borne in mind during the rationalization of its photophysics. As regards the observed high triplet quantum yield of the molecule, it is concluded that the triplet states 23Ag and 23Bu, separated about 0.4 eV from the two lowest singlet excited states, can be populated by intersystem crossing from nonplanar singlet states.  相似文献   

15.
A heteroleptic bis(tributylphosphine) platinum(II)‐alkynyl complex ( Pt‐1 ) showing broadband visible‐light absorption was prepared. Two different visible‐light‐absorbing ligands, that is, ethynylated boron‐dipyrromethene (BODIPY) and a functionalized naphthalene diimide (NDI) were used in the molecule. Two reference complexes, Pt‐2 and Pt‐3 , which contain only the NDI or BODIPY ligand, respectively, were also prepared. The coordinated BODIPY ligand shows absorption at 503 nm and fluorescence at 516 nm, whereas the coordinated NDI ligand absorbs at 594 nm; the spectral overlap between the two ligands ensures intramolecular resonance energy transfer in Pt‐1 , with BODIPY as the singlet energy donor and NDI as the energy acceptor. The complex shows strong absorption in the region 450 nm–640 nm, with molar absorption coefficient up to 88 000 M ?1 cm?1. Long‐lived triplet excited states lifetimes were observed for Pt‐1 – Pt‐3 (36.9 μs, 28.3 μs, and 818.6 μs, respectively). Singlet and triplet energy transfer processes were studied by the fluorescence/phosphorescence excitation spectra, steady‐state and time‐resolved UV/Vis absorption and luminescence spectra, as well as nanosecond time‐resolved transient difference absorption spectra. A triplet‐state equilibrium was observed for Pt‐1 . The complexes were used as triplet photosensitizers for triplet–triplet annihilation upconversion, with upconversion quantum yields up to 18.4 % being observed for Pt‐1 .  相似文献   

16.
Various photosensitizers were grafted by conventional peptide coupling methods to functionalized silica with several macroscopic shapes (powders, films) or embedded in highly transparent and microporous silica xerogel monoliths. Owing to the transparency and free‐standing shape of the monoliths, the transient species arising from irradiation of the PSs could be analyzed and were not strikingly different from those observed in solutions. The observed reactivity for either liquid–solid (α‐terpinene oxygenation vs dehydrogenation) or gas–solid (dimethylsulfide, DMS, solvent‐free oxidation) reactions was consistent with the properties of the excited states of the PSs under consideration. Immobilized anthraquinone‐derived materials preferentially react in both cases by electron transfer from the substrate to the triplet state of the sensitizer, in spite of an efficient singlet oxygen production. The recently developed 9,14‐dicyanobenzo[b]triphenylene‐3‐carboxylic acid, DBTP‐COOH, efficiently reacts via energy transfer to yield singlet oxygen from its triplet state. It was shown to perform better than 9,10‐dicyanoanthracene and rose bengal for DMS oxidation and α‐terpinene photooxygenation to ascaridole, respectively. Thus, by a proper choice of the organic immobilized photocatalyst, it is possible to develop efficient and reusable materials, activated under visible light, for various applications and to tune the reaction pathway, opening the way to green oxidation processes.  相似文献   

17.
Abstract— Quenching of the excited states of lumiflavin and 3-methyl-5-deazalumiflavin by methyl-and methoxy-substituted benzenes and naphthalenes in methanol was investigated. The observed difference in the reactivity of acid and neutral lumiflavin triplets is explained thermodynamically by applying the Michaelis cycle, as being due to the higher reduction potential of the acid triplet. In this connection the p K values of lumiflavin triplet (p K M= 6.5) and semiquinone (p K M= 11.3) have also been determined in methanol. The difference in the reactivity between the singlet and triplet states of lumiflavin is found to be greater as predicted by the difference in excitation energy. The reactivities of the excited states of flavin and 5-deazaflavin differ only slightly in contrast to the marked difference in the ground state reactivities of electron transfer reactions. This is explained in terms of the model of Rehm and Weller. The pH dependence of the electron transfer quenching of 5-deazaflavin triplet was investigated in water, yielding a triplet p K of 2.5. In contrast to the flavin, this triplet p K does not significantly differ from the p K of the 5-deazaflavin ground state. From this, different sites of protonation are deduced for the photoexcited triplet states of flavin and 5-deazaflavin.  相似文献   

18.
Extensive time-dependent DFT (TDDFT) and DFT/multireference configuration interaction (MRCI) calculations are performed on the singlet and triplet excited states of free-base porphyrin, with emphasis on intersystem crossing processes. The equilibrium geometries, as well as the vertical and adiabatic excitation energies of the lowest singlet and triplet excited states are determined. Single and double proton-transfer reactions in the first excited singlet state are explored. Harmonic vibrational frequencies are calculated at the equilibrium geometries of the ground state and of the lowest singlet and triplet excited states. Furthermore, spin–orbit coupling matrix elements of the lowest singlet and triplet states and their numerical derivatives with respect to nuclear displacements are computed. It is shown that opening of an unprotonated pyrrole ring as well as excited-state single and double proton transfer inside the porphyrin cavity lead to crossings of the potential energy curves of the lowest singlet and triplet excited states. It is also found that displacements along out-of-plane normal modes of the first excited singlet state cause a significant increase of the 2|Hso|S1>, 1|Hso|S1>, and 1|Hso|S0> spin–orbit coupling matrix elements. These phenomena lead to efficient radiationless deactivation of the lowest excited states of free-base porphyrin via intercombination conversion. In particular, the S1→T1 population transfer is found to proceed at a rate of ≈107 s−1 in the isolated molecule.  相似文献   

19.
The electron positive boron atom usually does not contribute to the frontier orbitals for several lower‐lying electronic transitions, and thus is ideal to serve as a hub for the spiro linker of light‐emitting molecules, such that the electron donor (HOMO) and acceptor (LUMO) moieties can be spatially separated with orthogonal orientation. On this basis, we prepared a series of novel boron complexes bearing electron deficient pyridyl pyrrolide and electron donating phenylcarbazolyl fragments or triphenylamine. The new boron complexes show strong solvent‐polarity dependent charge‐transfer emission accompanied by a small, non‐negligible normal emission. The slim orbital overlap between HOMO and LUMO and hence the lack of electron correlation lead to a significant reduction of the energy gap between the lowest lying singlet and triplet excited states (ΔET‐S) and thereby the generation of thermally activated delay fluorescence (TADF).  相似文献   

20.
The lowest excited state of aromatic carbonyl compounds (naphthaldehydes, acetonaphthones, and 10-methylacridone) is changed from the n,pi triplet to the pi,pi singlet which becomes lower in energy than the n,pi triplet by the complexation with metal ions such as Mg(ClO(4))(2) and Sc(OTf)(3) (OTf = triflate), which act as Lewis acids. Remarkable positive shifts of the one-electron reduction potentials of the singlet excited states of the Lewis acid-carbonyl complexes (e.g., 1.3 V for the 1-naphthaldehyde-Sc(OTf)(3) complex) as compared to those of the triplet excited states of uncomplexed carbonyl compounds result in a significant increase in the redox reactivity of the Lewis acid complexes vs uncomplexed carbonyl compounds in the photoinduced electron-transfer reactions. Such enhancement of the redox reactivity of the Lewis acid complexes leads to the efficient C-C bond formation between benzyltrimethylsilane and aromatic carbonyl compounds via the Lewis-acid-promoted photoinduced electron transfer. The quantum yield determinations, the fluorescence quenching, and direct detection of the reaction intermediates by means of laser flash photolysis experiments indicate that the Lewis acid-catalyzed photoaddition reactions proceed via photoinduced electron transfer from benzyltrimethylsilane to the singlet excited states of Lewis acid-carbonyl complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号