首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new three‐dimensional graphene oxide‐wrapped melamine foam was prepared and used as a solid‐phase extraction substrate. β‐Cyclodextrin was fabricated onto the surface of three‐dimensional graphene oxide‐wrapped melamine foam by a chemical covalent interaction. In view of a specific surface area and a large delocalized π electron system of graphene oxide, in combination with a hydrophobic interior cavity and a hydrophilic peripheral face of β‐cyclodextrin, the prepared extraction material was proposed for the determination of flavonoids. In order to demonstrate the extraction properties of the as‐prepared material, the adsorption energies were theoretically calculated based on periodic density functional theory. Static‐state and dynamic‐state binding experiments were also investigated, which revealed the monolayer coverage of flavonoids onto the β‐cyclodextrin/graphene oxide‐wrapped melamine foams through the chemical adsorption. 1H NMR spectroscopy indicated the formation of flavonoids–β‐cyclodextrin inclusion complexes. Under the optimum conditions, the proposed method exhibited acceptable linear ranges (2–200 μg/L for rutin and quercetin‐3‐O‐rhamnoside; 5–200 μg/L for quercetin) with correlation coefficients ranging from 0.9979 to 0.9994. The batch‐to‐batch reproducibility (= 5) was 3.5–6.8%. Finally, the as‐established method was satisfactorily applied for the determination of flavonoids in Lycium barbarum (Goji) samples with relative recoveries in the range of 77.9–102.6%.  相似文献   

2.
Polydopamine‐coated Fe3O4 magnetic nanoparticles synthesized through a facile solvothermal reaction and the self‐polymerization of dopamine have been employed as a magnetic solid‐phase extraction sorbent to enrich four phenolic compounds, bisphenol A, tetrabromobisphenol A, (S)‐1,1′‐bi‐2‐naphthol and 2,4,6‐tribromophenol, from environmental waters followed by high‐performance liquid chromatographic detection. Various parameters of the extraction were optimized, including the pH of the sample matrix, the amount of polydopamine‐coated Fe3O4 sorbent, the adsorption time, the enrichment factor of analytes, the elution solvent, and the reusability of the nanoparticles sorbent. The recoveries of these phenols in spiked water samples were 62.0–112.0% with relative standard deviations of 0.8–7.7%, indicating the good reliability of the magnetic solid‐phase extraction with high‐performance liquid chromatography method. In addition, the extraction characteristics of the magnetic polydopamine‐coated Fe3O4 nanoparticles were elucidated comprehensively. It is found that there are hydrophobic, π–π stacking and hydrogen bonding interactions between phenols and more dispersible polydopamine‐coated Fe3O4 in water, among which hydrophobic interaction dominates the magnetic solid‐phase extraction performance.  相似文献   

3.
A β‐cyclodextrin‐modified attapulgite composite was prepared and used as a dispersive micro‐solid‐phase extraction sorbent for the determination of benzoylurea insecticides in honey samples. Parameters that may influence the extraction efficiency, such as the type and volume of the eluent, the amount of the sorbent, the extraction time and the ionic strength were investigated and optimized using batch and column procedures. Under optimized conditions, good linearity was obtained for all of the tested compounds, with R2 values of at least 0.9834. The limits of detection were determined in the range of 0.2–1.0 μg/L. The recoveries of the four benzoylurea insecticides in vitex honey and acacia honey increased from 15.2 to 81.4% and from 14.2 to 82.0%, respectively. Although the β‐cyclodextrin‐modified attapulgite composite did not show a brilliant adsorption capacity for the selected benzoylurea insecticides, it exhibited a higher adsorption capacity toward relatively hydrophobic compounds, such as chlorfluazuron and hexaflumuron (recoveries in vitex honey samples ranged from 70.0 to 81.4% with a precision of 1.0–3.7%). It seemed that the logPow of the benzoylurea insecticides is related to their recoveries. The results confirmed the possibility of using cyclodextrin‐modified palygorskite in the determination of relatively hydrophobic trace pharmaceutical residues.  相似文献   

4.
In this work, a magnetic β‐cyclodextrin polymer was successfully prepared and used as an adsorbent for the magnetic solid‐phase extraction of six benzoylurea insecticides (diflubenzuron, triflumuron, hexaflumuron, teflubenzuron, flufenoxuron, and chlorfluazuron) from honey, tomato, and environmental water samples. The influence of the main experimental conditions on the extraction was studied. Under the optimized conditions, the β‐cyclodextrin polymer@Fe3O4 showed an excellent extraction performance for the benzoylurea insecticides. A good linearity was obtained for the analytes in the range of 3.0–800 ng/g for honey samples, 0.3–160 ng/g for tomato samples, and 0.1–80.0 ng/mL for water samples, with the correlation coefficients above 0.9998. Satisfactory repeatabilities were achieved, with the relative standard deviations less than 5.7%. The limits of detection (S/N = 3) of the method for the benzoylurea insecticides were 0.2–0.8 ng/g for honey samples, 0.04–0.10 ng/g for tomato samples, and 0.02–0.05 ng /mL for water samples. The method was successfully used for the determination of the six benzoylurea insecticides residues in honey, tomato, and environmental water samples with a satisfactory result.  相似文献   

5.
A new type of chiral magnetic nanoparticle was prepared from covalently linked magnetic nanoparticles (Fe3O4) and heptakis‐(6‐O‐triisopropylsilyl)‐β‐cyclodextrin (6‐TIPS‐β‐CD). The resulting selectors (TIPS‐β‐CD‐MNPs) combined the good magnetic properties Fe3O4 and efficient chiral recognition ability of 6‐TIPS‐β‐CD. The enantioselectivity of TIPS‐β‐CD‐MNPs towards 1‐(1‐naphthyl)ethylamine was six times higher than that of the parent β‐CD modified Fe3O4 particles.  相似文献   

6.
β‐Cyclodextrin and its derivatives can selectively bind to various organic molecules in its cavity and provide good applications in sample preparation. Surface‐enhanced Raman spectroscopy is a sensitive technique and has received increasing attention in the last decade. Herein, 3,5‐dimethyl phenyl carbamoylated β‐cyclodextrin bonded silica gel was used as a ssorbent in solid‐phase extraction to selectively enrich forchlorfenuron and thidiazuron followed by determination with surface‐enhanced Raman spectroscopy. It showed excellent selectivity for forchlorfenuron and thidiazuron and the adsorption capacities were 40.0 and 30.0 μg/g, respectively. A rapid and sensitive method based on the modified β‐cyclodextrin solid‐phase extraction coupled with surface‐enhanced Raman spectroscopy was developed. The linear ranges were 30.0–300.0 μg/L for forchlorfenuron and thidiazuron at 1005 and 640 cm?1, respectively. Both of the limits of detection were 15.0 μg/L, which were significantly lower than the maximum permitted by the National Standard. The recoveries of forchlorfenuron and thidiazuron were 78.9–87.9% for the spiked grape, kiwi, cucumber and tomato, with relative standard deviations of 8.1–13.2%. The results show that this method is sensitive, selective, and relatively time saving, and has great potential in the analysis of trace amounts of plant growth regulators in fruits and vegetables.  相似文献   

7.
Magnetite nanoparticles incorporated into alginate beads and coated with a polypyrrole adsorbent were prepared (polypyrrole/Fe3O4/alginate bead) and used as an effective magnetic solid‐phase extraction sorbent for the extraction and enrichment of endocrine‐disrupting compounds (estriol, β‐estradiol and bisphenol A) in water samples. The determination of the extracted endocrine‐disrupting compounds was performed using high‐performance liquid chromatography with a fluorescence detector. The effect of various parameters on the extraction efficiency of endocrine disrupting compounds were investigated and optimized including the type and amount of sorbent, sample pH, extraction time, stirring speed, and desorption conditions. Under optimum conditions, the calibration curves were linear in the concentration range of 0.5–100.0 μg/L, and the limit of detection was 0.5 μg/L. The developed method showed a high extraction efficiency, the recoveries were in the range of 90.5 ± 4.1 to 98.2 ± 5.5%. The developed sorbent was easy to prepare, was cost‐effective, robust, and provided a good reproducibility (RSDs < 5%), and could be reused 16 times. The developed method was successfully applied for the determination of endocrine‐disrupting compounds in water samples.  相似文献   

8.
A polymeric column that contains multiwalled carbon nanotubes‐β‐cyclodextrin composite was developed. The composite was wrapped into the poly(butyl methacrylate‐ethylene dimethacrylate) monolith column (0.76 mm id and 10 cm in length). The column was then applied for the online solid‐phase microextraction of psoralen and isopsoralen from Fructus Psoraleae. Following microextraction, the coumarins were quantified by high‐performance liquid chromatography with C18 separation column and UV detection. The effects of sample flow rate, sample volume, and pH value were optimized. The method showed low limits of detection (20 pg/mL, S/N = 3) for both psoralen and isopsoralen. Finally the method was successfully applied to the determination of psoralen and isopsoralen in spiked herb extracts and rat plasma where it gave recoveries that ranged between 93.2 and 102.1%. The empty hydrophobic cavities of β‐cyclodextrin and the hydrophobicity of multiwalled carbon nanotubes provided specific extraction capability for psoralen and isopsoralen.  相似文献   

9.
Octakis[3‐(3‐aminopropyltriethoxysilane)propyl]octasilsesquioxane (APTPOSS) as a polyhedral oligomeric silsesquioxane derivative was prepared and used as a pioneer reagent to obtain a novel core–shell composite using magnetic iron oxide nanoparticles as the core and the inorganic–organic hybrid polyhedral oligomeric silsesquioxane as the shell. Fe3O4@SiO2/APTPOSS were confirmed using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, dynamic light scattering, thermogravimetric analysis, X‐ray diffraction and vibrating sample magnetometry. The inorganic–organic hybrid polyhedral oligomeric silsesquioxane magnetic nanoparticles were used as an efficient new heterogeneous catalyst for the one‐pot three‐component synthesis of 1,3‐thiazolidin‐4‐ones under solvent‐free conditions. Moreover, these nanoparticles could be easily separated using an external magnet and then reused several times without significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
An acryloyl β‐cyclodextrin‐silica hybrid monolithic column for pipette tip solid‐phase extraction and high‐performance liquid chromatography determination of methyl parathion and fenthion has been prepared through a sol–gel polymerization method. The synthesis conditions, including the volume of cross‐linker and the ratio of inorganic solution to organic solution, were optimized. The prepared monolithic column was characterized by thermogravimetric analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy. The eluent type, volume and flow rate, sample volume, flow rate, acidity, and ionic strength were optimized in detail. Under the optimized conditions, a simple and sensitive pipette tip solid‐phase extraction with high‐performance liquid chromatography method was developed for the determination of methyl parathion and fenthion in lettuce. The method yielded a linear calibration curve in the concentration ranges of 15–400 μg/kg for methyl parathion and 20–400 μg/kg for fenthion with correlation coefficients of above 0.9957. The limits of detection were 4.5 μg/kg for methyl parathion and 6.0 μg/kg for fenthion, respectively. The recoveries of methyl parathion and fenthion spiked in lettuce ranged from 96.0 to 104.2% with relative standard deviations less than 8.4%.  相似文献   

11.
As a key representative organism, earthworms can directly illustrate the influence of pesticides on environmental organisms in soil ecosystems. The present work aimed to develop a high‐throughput multipesticides residue analytical method for earthworms using solid–liquid extraction with acetonitrile as the solvent and magnetic material‐based dispersive solid‐phase extraction for purification. Magnetic Fe3O4 nanoparticles were modified with a thin silica layer to form Fe3O4‐SiO2 nanoparticles, which were fully characterized by field‐emission scanning electron microscopy, transmission electron microscopy, Fourier‐transform infrared spectroscopy, X‐ray diffractometry, and vibrating sample magnetometry. The Fe3O4‐SiO2 nanoparticles were used as the separation media in dispersive solid‐phase extraction with primary secondary amine and ZrO2 as the cleanup adsorbents to eliminate matrix interferences. The amounts of nanoparticles and adsorbents were optimized for the simultaneous determination of 44 pesticides and six metabolites in earthworms by liquid chromatography with tandem mass spectrometry. The method performance was systematically validated with satisfactory results. The limits of quantification were 20 μg/kg for all analytes studied, while the recoveries of the target analytes ranged from 65.1 to 127% with relative standard deviation values lower than 15.0%. The developed method was subsequently utilized to explore the bioaccumulation of bitertanol in earthworms exposed to contaminated soil, verifying its feasibility for real sample analysis.  相似文献   

12.
In this study, a novel magnetic nanoadsorbent was synthesized by grafting β‐cyclodextrin onto the modified surface of Fe3O4 nanoparticles for the sorption and extraction of sertraline hydrochloride from human biological fluids. The extracted sertraline hydrochloride was measured by high‐performance liquid chromatography. The grafted nanosorbent was confirmed by Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, and elemental analysis. The kinetic sorption of sertraline hydrochloride by magnetic nanosorbent was 1 h. The best temperature for sorption of sertraline hydrochloride was at 25°C at an optimum pH of 5. The adsorbed sertraline hydrochloride can be desorbed by using methanol solution containing acetic acid (5%) and trifluoroacetic acid (1%).  相似文献   

13.
Various cotton fiber based boronate‐affinity adsorbents are recently developed for the sample pretreatment of cis‐diol‐containing biomolecules, but most do not have efficient capacity due to limited binding sites on the surface of cotton fibers. To increase the density of boronate groups on the surface of cotton fiber, polyhedral oligomeric silsesquioxanes were used to modify cotton fiber to provide plentiful reactive sites for subsequent functionalization with 4‐formylphenylboronic acid. The new adsorbent showed special recognition ability towards cis‐diols and high adsorption capacity (175 μg/g for catechol, 250 μg/g for dopamine, 400 μg/g for adenosine). The in‐pipette‐tip solid‐phase extraction was investigated under different conditions, including pH and ionic strength of solution, adsorbent amount, pipette times, washing solvent, and elution solvent. The in‐pipette‐tip solid‐phase extraction coupled with high‐performance liquid chromatography was used to analyze four nucleosides in urine samples. Under the optimal extraction conditions, the detection limits were determined to be between 5.1 and 6.1 ng/mL (S/N  =  3), and the linearity ranged from 20 to 500 ng/mL for these analytes. The accuracy of the analytical method was examined by studying the relative recoveries of analytes in real urine samples with recoveries varying from 83 to 104% (RSD = 3.9–10.2%, n = 3).  相似文献   

14.
A type of surface imprinting over magnetic Fe3O4 nanoparticles utilizing erythromycin‐A as a template for use in the separation and recovery of erythromycin was developed and investigated. As the intermolecular forces play a key role in the performance of imprinted materials, differential scanning calorimetry, and 1H NMR spectroscopy was employed to evaluate the interactions between erythromycin and the functional monomer β‐cyclodextrin. To synthesize the surface imprinted polymers, magnetic Fe3O4 nanoparticles, the core materials, were modified with a free radical initiator to initialize polymerization in a “grafting from” manner. Then using acryloyl‐modified β‐cyclodextrin as the functional monomer and ethyleneglycol dimethacrylate as the cross‐linker, thin erythromycin‐imprinted films were fabricated by the radical‐induced graft copolymerization of monomers on the surface of the Fe3O4 nanoparticles. Selectivity experiments showed that the erythromycin‐A‐imprinted materials had recognition ability toward erythromycin derivatives. Finally, these magnetic molecularly imprinted particles were successfully used for the separation and enrichment of erythromycin from the mother liquor. The recovery, detected by high‐performance liquid chromatography and differential pulse voltammetry, approached 97%. The combination of the specific selectivity of the imprinted material and the magnetic separation provided a powerful tool that is simple, flexible, and selective for the separation and recovery of erythromycin.  相似文献   

15.
In this paper, a novel graphene (G) grafted silica‐coated Fe3O4 nanocomposite was fabricated by the chemical bonding of G onto the surface of silica‐coated Fe3O4 nanoparticles. Some carbamates (metolcarb, carbaryl, pirimicarb, and diethofencarb) in cucumber and pear samples were enriched by this nanocomposite prior to their determination by HPLC with UV detection. Experimental parameters that may affect the extraction efficiency were investigated. Under the optimum conditions, a linear response was achieved in the concentration range of 0.5–100.0 ng/g for metolcarb, carbaryl, and diethofencarb, and 1.0–100 ng/g for pirimicarb with the correlation coefficients (r) ranging from 0.9956 to 0.9984. The LOD (S/N = 3) of the method were found to be in the range from 0.08 to 0.2 ng/g. The RSDs were in the range from 2.4 to 5.8%. The results indicated that the G grafted silica‐coated Fe3O4 nanocomposite was stable and efficient for magnetic SPE and has a great application potential for the preconcentration of other organic pollutants from real samples.  相似文献   

16.
A novel magnetic adsorbent Fe3O4/reduced graphene oxide‐carbon nanotubes, was prepared by one‐pot solvothermal synthesis method. It was characterized by scanning electron microscopy, X‐ray powder diffraction and vibrating sample magnetometry. The diameter of Fe3O4 microparticles was about 350 nm, which were covered by carbon nanotubes and reduced graphene oxide sheets, while carbon nanotubes inserted between the reduced graphene oxide sheets effectively prevented their aggregation. The composite had large surface area and good magnetic property, suiting for magnetic solid‐phase extraction and the determination of sulfonamides, by coupling with high‐performance liquid chromatography. Under the optimized conditions (including extraction time, amount of adsorbent, solution pH, ionic strength and desorption conditions), a good linear was achieved in the concentration range of 5–500 μg/L and the low limits of detection and low limits of quantification were 0.35–1.32 and 1.16–4.40 μg/L, respectively. The enrichment factors were estimated to be 24.72 to 30.15 fold. The proposed method was applied for the detection of sulfonamides in milk sample and the recoveries were 88.4–105.9%, with relative standard deviations of 0.74–5.38%.  相似文献   

17.
A novel host reagent of β‐cyclodextrin‐2,4‐dihydroxyacetophenone‐phenylhydrazine(β‐CDP‐DHPH) was synthesized and characterized by IR and 1H NMR spectra. A highly selective and sensitive spectrofluorimetric determination of trace amounts of cadmium was proposed based on the reaction between Cd2+ and β‐CDP‐DHPH at pH 10.0. The molar ratio of β‐CDP‐DHPH to Cd2+ was 1:1. The linear range of this method was 0.56‐120 μg·L?;1 with a detection limit of 0.20 μg·L?;1. The interferences of 39 common ions in the determination of cadmium were investigated, and the results showed that the host reagent had a quite high selectivity. This method was rapid and simple in determination of trace amounts of cadmium in mineral, tap and river water.  相似文献   

18.
A novel dispersive admicelle solid‐phase extraction method based on sodium dodecyl sulfate‐coated Fe3O4 nanoparticles was developed for the selective adsorption of berberine, coptisine, and palmatine in Gegen‐Qinlian oral liquid before high‐performance liquid chromatography. Fe3O4 nanoparticles were synthesized by a chemical coprecipitation method and characterized by using transmission electron microscopy. Under acidic conditions, the surface of Fe3O4 nanoparticles was coated with sodium dodecyl sulfate to form a nano‐sized admicelle magnetic sorbent. Owing to electrostatic interaction, the alkaloids were adsorbed onto the oppositely charged admicelle magnetic nanoparticles. The quick separation of the analyte‐adsorbed nanoparticles from the sample solution was performed by using Nd‐Fe‐B magnet. Best extraction efficiency was achieved under the following conditions: 800 μL Fe3O4 nanoparticles suspension (20 mg/mL), 150 μL sodium dodecyl sulfate solution (10 mg/mL), pH 2, and vortexing time 2 min for the extraction of alkaloids from 10 mL of diluted sample. Four hundred microliters of methanol was used to desorb the alkaloids by vortexing for 1 min. Satisfactory extraction recoveries were obtained in the range of 85.9–120.3%, relative standard deviations for intra‐ and interday precisions were less than 6.3 and 10.0%, respectively. Finally, the established method was successfully applied to analyze the alkaloids in two batches of Gegen‐Qinlian oral liquids.  相似文献   

19.
A high‐throughput micro‐solid‐phase extraction device based on a 96‐well plate was constructed and applied to the determination of pesticide residues in various apple samples. Butyl methacrylate and ethylene glycol dimethacrylate were copolymerized as a monolithic polymer and placed in the cylindrically shaped stainless‐steel meshes of 96‐micro‐solid‐phase extraction device and used as an extracting unit. Before the micro‐solid‐phase extraction, microwave‐assisted extraction was employed to facilitate the transfer of the pesticide residues from the apple matrix to liquid media. Then, 1 mL of the aquatic samples was transferred into the 96‐well plate and the 96‐micro‐solid‐phase extraction device was applied for the extraction of the selected pesticides. Influential parameters, such as sorbent‐to‐sorbent reproducibility, microwave‐assisted extraction time, ionic strength and micro‐solid‐phase extraction time, were optimized. The limits of quantitation were below 120 μg/kg, which are lower than the maximum residue limits. The developed method was successfully implemented for the extraction and determination of the selected pesticides from 20 different apple samples gathered from local markets. Phosalone was identified and quantified at the concentration level of 147 (±16.4) μg/kg in one of the samples.  相似文献   

20.
A nanoliquid chromatographic method for the stereoisomer separation of some flavanone aglycones and 7‐O‐glycosides has been proposed employing a C18 capillary column and a chiral mobile‐phase additive such as cyclodextrin. The chiral separation of eriodictyol, naringenin, and hesperitin was obtained by addition of carboxymethyl‐β‐cyclodextrin to the mobile phase, whereas eriocitrin, naringin, narirutin, and hesperidin diastereoisomers were resolved by using sulfobutyl ether‐β‐cyclodextrin. The influence of the composition of the mobile phase, the length of the capillary column, and the flow rate on the chiral recognition were investigated. At optimum conditions, baseline separation for the selected aglycones and glycosylated forms were achieved with a mobile phase consisting of 50 mM sodium acetate buffer pH 3 and 30% methanol containing 20 mM of carboxymethyl‐β‐cyclodextrin and 10 mM of sulfobutyl ether‐β‐cyclodextrin, respectively. Precision, linearity, and sensitivity of the method were tested. Limits of detection and quantification for the studied flavanone glycosides were in the range 1.3‐2.5 and 7.5‐12.5 µg/mL, respectively. The method was used for the determination of the diastereomeric composition of the flavanone‐7‐O‐glycosides in Citrus juices after solid‐phase extraction procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号