首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the current study was the development of theophylline buccal adhesive tablets using direct compression. Buccal adhesive formulations were developed using a water soluble resin with various combinations of mucoadhesive polymers. The prepared theophylline tablets were evaluated for tensile strength, swelling capacity and ex vivo mucoadhesion performance. Ex vivo mucoadhesion was assessed using porcine gingival tissue and the peak detachment forces were found to be suitable for a buccal adhesive tablet with a maximum of 1.5 N approximately. The effect of formulation composition on the release pattern was also investigated. Most formulations showed theophylline controlled release profiles depended on the grade and polymer ratio. The release mechanisms were found to fit Peppas’ kinetic model over a period of 5 h. In general the majority of the developed formulations presented suitable adhesion and controlled drug release.  相似文献   

2.
The aim of this work was the realization of new formulations for vaginal application to improve the pharmacological effect of benzydamine, displaying both anti-inflammatory and antiseptic activities. For this reasons, this drug was formulated in solid dispersions, by using the mucoadhesive polymers HPMC and/or Carbopol(?), then compressed. Tablets were characterized by studies of friability, hardness, hydration, DSC, mucoadhesion and in vitro release. Kinetics, responsible for drug delivery, was investigated as well. Tablets prepared by using only HPMC showed the best results in terms of swelling and mucoadhesion (time and force) together with prolonged and complete drug release, by diffusive mechanism, through gelled layer. Despite the good mucoadhesive properties, Carbopol(?) does not represent a good excipient because, after the contact with water, it generates a spongy gel layer, not homogeneous, stiff, brittle and with breaking tendency when highly swelled. This kind of gel does not guarantee a linear drug release and could provoke discomfort because of fragment release. HPMC mucoadhesive tablets could be a proper delivery system for benzydamine administration representing a good alternative to traditional dosage forms for vaginal topical therapy.  相似文献   

3.
Although oral is the preferred route of administration of pharmaceutical formulations, the long‐standing challenge for medically active compounds to efficiently cross the mucus layer barrier limits its wider applicability. Efforts in nanomedicine to overcome this hurdle consider mucoadhesive and mucopenetrating drug carriers by selectively designing (macromolecular) building blocks. This review highlights and critically discusses recent strategies developed in this context including poly(ethylene glycol)‐based modifications, cationic and thiolated polymers, as well as particles with high charge density, zeta‐potential shifting ability, or mucolytic properties. The latest advances in ex vivo test platforms are also reviewed.  相似文献   

4.
Using the Monte Carlo simulation technique and the method of simulated annealing, we study interactions between small (nanometric) particles and flexible‐chain polymers with sticker groups which selectively adsorb on the particles and also can strongly attract each other. For the chains with two end stickers (telechelic polymers), we find that the colloidal particles adsorbing on the polymers play the role of junction points (locks) which bind together the ends of different chains. This direct or indirect binding leads to the formation of a web‐like structure throughout the sample: colloidal particles and chain stickers group into mixed clusters – “drops of a fog” – which are wrapped by polymer chains and connected by bridges. Analyzing static structure factors, we show that the selectively adsorbing telechelic polymers can affect the equilibrium spatially homogeneous distribution of colloidal particles that results in the appearance of a quasiregular structure on the intermediate scale related to the average intercluster distance. At sufficiently strong attraction between particles and chain end‐groups, most of the telechelic chains (>90%) adopt either a loop‐like or a stretched bridge‐like conformation, the most typical morphology of the system being a combination of these two structural elements. In the mixed clusters, the colloidal particles and the chain ends pack locally on a binary grid corresponding to a local crystal‐like arrangement. For the chains without attracting end‐groups, we observe the formation of elongated, rugby‐ball‐like clusters having alternate layers of particles and adsorbing chain groups.  相似文献   

5.
β-Cyclodextrin (βCD) and its soluble polymeric derivative (EPIβCD) were used to improve the effectiveness of chitosan-based bucco-adhesive film formulations containing bupivacaine hydrochloride and triclosan as poorly-soluble model drugs. The film formulations were characterized in terms of swelling, mucoadhesion and in vitro drug release, while possible interactions between the components were investigated by DSC and FTIR analyses. For both drugs EPIβCD showed a higher solubilizing efficiency than βCD; however cyclodextrin effectiveness in improving the release rate from film formulations was influenced by their different interactions with chitosan. Free βCD acted as a channelling agent, favouring the film swelling, while EPIβCD due to interaction with chitosan caused an opposite effect. βCD was the optimal partner for bupivacaine-loaded films in terms of film swelling, mucoadhesion and drug release. Contrariwise, EPIβCD was the best partner for triclosan-loaded films, allowing the highest drug release rate increase, due to its higher solubilizing ability with respect to βCD. Addition of the suitable cyclodextrin enabled formulation of buccal films with suitable drug release properties.  相似文献   

6.
New mucoadhesive formulations were designed and studied in order to improve local vaginal therapy by increasing formulation retention prolonging thus drug-mucosa contact time. Some gels were prepared using hydroxyethylcellulose (HEC) alone or mixed with chitosan (CS) or its derivative 5-methyl-pyrrolidinone-chitosan (MPCS) and were loaded with the antibacterial metronidazole (MET) (0.75%). All formulations showed pseudoplastic flow and viscosity increase was observed proportionally to chitosan content (CS>MPCS). Prepared gels showed better extrusion properties (yield stress) than market formulation Zidoval. Mucoadhesion force studies permitted to point out that: (i) CS decreases mucoadhesion force; (ii) MPCS addition increases the mucoadhesion force at high percentage; (iii) all gels containing chitosan showed better mucoadhesive performances than Zidoval. Gels containing MPCS showed higher and faster drug release than those containing CS. All the preparations were able to release higher drug amounts if compared to market formulation. In conclusion MPCS improved gel characteristics in terms of mucoadhesion force, rheological behaviour and drug release pointing out that this modified chitosan is very suitable to obtain manageable and more acceptable vaginal formulation.  相似文献   

7.
Mucoadhesion is the ability of materials to adhere to mucosal membranes in the human body and provide a temporary retention. This property has been widely used to develop polymeric dosage forms for buccal, oral, nasal, ocular and vaginal drug delivery. Excellent mucoadhesive properties are typical for hydrophilic polymers possessing charged groups and/or non-ionic functional groups capable of forming hydrogen bonds with mucosal surfaces. This feature article considers recent advances in the study of mucoadhesion and mucoadhesive polymers. It provides an overview on the structure of mucosal membranes, properties of mucus gels and the nature of mucoadhesion. It describes the most common methods to evaluate mucoadhesive properties of various dosage forms and discusses the main classes of mucoadhesives.  相似文献   

8.
Protein‐imprinted polymers with hollow cores that have a super‐high imprinting factor were prepared by etching the core of the surface‐imprinted polymers that used silica particles as the support. Lysozyme as template was modified onto the surface of silica particles by a covalent method, and after polymerization and the removal of template molecules, channels through the polymer layer were formed, which allowed a single‐protein molecule to come into the hollow core and attach to the binding sites inside the polymer layer. The adsorption experiments demonstrated that the hollow imprinted polymers had an extremely high binding capacity and selectivity, and thus a super‐high imprinting factor was obtained. The as‐prepared imprinted polymers were used to separate the template lysozyme from egg white successfully, indicating its high selectivity and potential application in the field of separation of protein from real samples.  相似文献   

9.
In recent years, production and characterization of anisotropic particles has become of interest in a wide range of scientific fields including polymer chemistry, drug delivery, electronics, energy, and nanotechnology. In this work, we demonstrate a novel formulation for production of anisotropic particles via an internal phase separation of biodegradable components. Specifically, binary mixtures of biodegradable polymers poly(lactic-co-glycolic acid), polycaprolactone, and biodegradable lipid Precirol (glyceryl palmitostearate) were dissolved in dichloromethane, emulsified, and prepared into anisotropic particles using a modified solvent evaporation technique. During the slow evaporation process the components self-assembled into anisotropic particles with distinct morphologies. Polymer/polymer formulations resulted in compartmentalized anisotropic heterodimer particles, while polymer/lipid combinations yielded "ice cream cone" shaped particles. It was found that addition of certain active pharmaceuticals resulted in an altered, pox-like segregation at the particle surface of polymer/polymer formulations. The anisotropic nature of the particles was subsequently characterized using optical microscopy, scanning electron microscopy, zeta potential, electrophoresis, and X-ray diffraction. Successful formulations presented here may potentially be employed as multicompartmental drug carriers with staggered drug release rates or alternatively as a colloidal excipient for an arsenal of pharmaceutical applications.  相似文献   

10.
New strategies for the synthesis of multifunctional particles that respond to external stimuli and release biologically relevant agents will enable the discovery of new formulations for drug delivery. In this article, we combine two powerful methods: brush‐first ring‐opening metathesis polymerization and copper‐catalyzed azide–alkyne cycloaddition click chemistry, for the synthesis of a novel class of brush‐arm star polymers (BASPs) that simultaneously degrade and release the anticancer drug doxorubicin (DOX) in response to 365 nm light. In vitro cell viability studies were performed to study the toxicity of azide‐ and DOX‐loaded BASPs. The former were completely nontoxic. The latter showed minimal toxicity in the absence of light; UV‐triggered DOX release led to IC50 values that were similar to that of free DOX.  相似文献   

11.
Summary: We have conducted Monte Carlo simulations to investigate a greatly simplified model for a blend composed of templated materials (polymers or monomers), smaller reacting particles and solvents on a two‐dimensional lattice. In the simulations, we compute the mean chain conformation of flexible templated polymers, and the distribution of the number of adjacent reacting particles aligned along the same axis to rationalize how templated materials affect the physical aggregation of smaller particles in a blend. We first examine the effects of the effective interactions between templated materials and smaller reacting particles. For repulsive interactions, flexible templated polymers tend to contract to reduce repulsions arising from smaller reacting particles, but for attractive interactions, mean chain dimension increases to maximize attraction. When templated material composition is increased, the conformational deformation of templated polymers becomes more pronounced. Moreover, in the presence of attractive interactions, reacting particles are more dispersed in the blend. In contrast, repulsive interactions increase the probability of aggregation of reacting particles. Also, our findings show that templated monomers (without chain connectivity) interact with reacting particles more effectively than with templated polymers due to the greater interacting area per monomer, which enhances the dispersion and segregation of reacting particles in the blend due to the attractive and repulsive interaction, respectively. In addition, as templated material composition is increased, the probability of forming a larger aggregate decreases. This simple model allows us to elucidate the role of templated materials on the physical aggregation of smaller particles in a blend.

Probability distribution P(m) of finding m adjacent reacting particles along the same axis in the presence of templated polymers (open symbols) and templated monomers (solid symbols) for different monomer‐reacting particle ratio, 1:3 (□/▪), 1:1 (○/•) and 3:1 (▵/▴):.  相似文献   


12.
Injectable biodegradable copolymer hydrogels, which exhibit a sol–gel phase transition in response to external stimuli, such as temperature changes or both pH and temperature (pH/temperature) alterations, have found a number of uses in biomedical and pharmaceutical applications, such as drug delivery, cell growth, and tissue engineering. These hydrogels can be used in simple pharmaceutical formulations that can be prepared by mixing the hydrogel with drugs, proteins, or cells. Such formulations are administered in a straightforward manner, through site‐specific control of release behavior, and the hydrogels are compatible with biological systems. This review will provide a summary of recent progress in biodegradable temperature‐sensitive polymers including polyesters, polyphosphazenes, polypeptides, and chitosan, and pH/temperature‐sensitive polymers such as sulfamethazine‐, poly(β‐amino ester)‐, poly(amino urethane)‐, and poly(amidoamine)‐based polymers. The advantages of pH/temperature‐sensitive polymers over simple temperature‐sensitive polymers are also discussed. A perspective on the future of injectable biodegradable hydrogels is offered.

  相似文献   


13.
Linear and nonlinear viscoelastic properties were measured in the molten state for several model ABS polymers with different rubber particle contents. Linear viscoelastic functions for ABS polymers can be separated in two parts. One is a relaxation associated with the entanglement of matrix SAN chains and the other comes from the particle‐particle interactions of rubber particles. This relaxation depends strongly on the degree of dispersion of rubber particles. The second‐plateau modulus appeared at low frequency with samples in which rubber particles agglomerate. While, the second‐plateau modulus was not observed with samples in which rubber particles are finely dispersed. Matching of AN content between grafted and matrix SAN and optimum graft density form a finely dispersed system. Large deformation relaxation measurements revealed that the damping of ABS polymers having a good dispersion of particles become stronger with an increase in rubber content. This strong damping can be explained by a layered structure. The very long relaxation was found for higher rubber content, when the neighboring grafted SAN chains contact with each other.  相似文献   

14.
Several water‐soluble polymers were used as templates for the in situ polymerization of pyrrole to determine their effect on the generation of nanosized polypyrrole (PPy) particles. The polymers used include: polyvinyl alcohol (PVA), polyethylene oxide (PEO), poly(vinyl butyral), polystyrene sulfonic acid, poly(ethylene‐alt‐maleic anhydride) (PEMA), poly(octadecene‐alt‐maleic anhydride), poly(N‐vinyl pyrrolidone), poly(vinyl butyral‐co‐vinyl alcohol‐co‐vinyl acetate), poly(N‐isopropyl acrylamide), poly(ethylene oxide‐block‐propylene oxide), hydroxypropyl methyl cellulose, and guar gum. The oxidative polymerization of pyrrole was carried out with FeCl3 as an oxidant. The morphology of PPy particles obtained after drying the resulting aqueous dispersions was examined by optical microscopy, and selected samples were further analyzed via atomic force microscopy. Among the template polymers, PVA was the most efficient in generating stable dispersions of PPy nanospheres in water, followed by PEO and PEMA. The average size of PPy nanospheres was in the range of 160 nm and found to depend on the molecular weight and concentration of PVA. Model reactions and kinetics of the polymerization reaction of pyrrole in PVA were carried out by hydrogen 1H NMR spectroscopy using ammonium persulfate as an oxidant. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
In glassy polymers toughened by inclusion of nanometric rubber particles, the high impact strength is due to cavitation of the rubber particles followed by the appearance of microshear bands in the glassy matrix. These materials are mostly opalescent or even opaque, which renders difficult any optical investigation of the damage process. Simple light scattering techniques were employed in earlier work to study the onset of damage in transparent toughened polymers. As demonstrated in one previous paper, multiple light scattering can be employed to further investigate opaque materials and hence highly damaged polymers. Coherent light backscattering in strongly opaque materials arises from the fact that an incident light beam, if not absorbed, is scattered successively by several scatterers before emerging again at the front surface of the body. The so‐called coherent backscattering cone may be analyzed in terms of the size, shape, and density of the scatterers. In the present work, this technique was applied to a semicrystalline polymer and to rubber toughened PMMA containing core‐shell (hard core) particles, an initially transparent material which becomes progressively opaque in the course of mechanical damage under stress. During the damage process, both the number of cavitated particles and their individual void fraction may increase, and a cavitated particle acts as a light scatterer of cross‐section proportional to its void content. The weakness of such scattering techniques resides in the fact that the light scattering pattern is determined by the product of the density of the scatterers and their scattering cross‐section. Consequently, the number of damaged particles cannot be separated from the particle void content. This study describes a new method based on the superposition of small elastic unloadings on the main tensile strain. During these unloadings, the number of damaged particles remains constant but their optical cross‐section changes, thus leading to a supplementary equation describing the scattering properties of the body. Hence, the number of cavitated particles and their individual void fraction may be calculated separately from the experimental data. Since the use of coherent light backscattering to investigate damage mechanisms in polymers is relatively new, the paper also recalls the basic principles of multiple light scattering. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 113–126, 1999  相似文献   

16.
Since natural pigments are lost during the processing of beverages such as pomegranate juice, carmoisine, as an adulterant, is often added into the pure juice to improve color characteristics. In this study, molecularly imprinted polymers, as an adsorbent of carmoisine, were synthesized using acrylamide, methacrylic acid, and 4‐vinylpyridine as functional monomers and then they were evaluated in terms of the separation and detection of carmoisine. Experiments on the batch adsorption of carmoisine 10 ppm stock solution revealed a better binding capacity for the 4‐vinylpyridine‐based polymer in comparison to methacrylic acid and acrylamide polymers. The complexation of carmoisine with the 4‐vinylpyridine‐based polymer was confirmed by Fourier transform infrared spectroscopy. The synthesized polymer exerted a high thermal degradation point and average diameter of polymer particles were obtained to be 0.2 μm by dynamic light scattering analysis. This work showed that detection of pomegranate juice adulteration with carmoisine is not necessarily difficult, time consuming or expensive with selective separation techniques such as molecularly imprinted polymers.  相似文献   

17.
Several hollow porous organic polymers were conveniently fabricated by poly‐condensation of tetraphenyl porphyrin (TPP), tetrabiphenyl porphyrin (TBPP), or triphenylbenzene (TPB), with nano‐sized ZnO particles as template and AlCl3 as catalyst. The hollow polymers exhibit much enhanced adsorption capacity for organic dyes in aqueous solution relative to the pristine polymers. Particularly, the hollow polymer based on TBPP (h‐COP‐P) displays high adsorption capacity (460 mg/g within 500 min) as well as good recycling performance toward Rhodamine B. This capacity is about three times larger than that of corresponding pristine POPs (COP‐P) and is even comparable with the best performed organic polymers reports to date, which is ascribed to its unique hydrophobic hollow structure. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1329–1337  相似文献   

18.
Highly toxic polyallylamine (PA) was reacted with a varying amount of a novel linker, 6‐(N,N,N′,N′‐tetramethylguanidinium chloride) hexanoic acid (Tmg‐HA), to prepare a series of tetramethylguanidinium‐PA (Tmg‐PA) polymers, which were used as vectors for gene transfection. The extent of attachment of the linker, Tmg‐HA, to the PA backbone was determined by 2,4,6‐trinitrobenzene sulfonic acid assay. The modified polymers (Tmg‐PAs), when complexed with pDNA, exhibited good condensation ability. The nanoparticles, so formed, were characterized by their size and zeta potential and were subsequently evaluated for their toxicity and transfection ability on various mammalian cells, viz., HeLa, CHO, and HEK 293 cells. Mobility shift assay revealed that on increasing the percent substitution of Tmg‐HA onto PA (from Tmg‐PA1 to Tmg‐PA6), relatively higher amounts of modified polymers were required to retard the mobility of a fixed amount of DNA. Besides, Tmg‐PA polymers provided sufficient protection (ca. 84–88%) to bound DNA against nucleases and one of the formulations, Tmg‐PA2 (ca. 15% substitution) displayed the highest transfection efficiency outcompeting the commercial transfection reagent, Lipofectamine? with minimal cytotoxicity. More impressively, the transfection efficiency increased despite recording a decrease in the buffering capacity of the grafted polymers suggesting that buffering capacity is not the sole parameter in determining the gene delivery efficiency of a vector system. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Mixed polymer-surfactant systems have broad applications, ranging from detergents, paints, pharmaceutical, and cosmetic to biotechnological. A review of the underlying polymer-surfactant association in bulk is given. While ionic surfactants bind broadly to polymers, nonionics only do so if the polymer has a lower polarity and can interact by hydrophobic interactions. Water-soluble polymers, which have hydrophobic groups, form physical cross-links, hence they may be used as thickeners. The rheological behaviour is strongly influenced by various cosolutes; especially strong effects are due to surfactants and both a decrease and an increase in viscosity can occur. When the polymer-surfactant interactions are particularly strong, an associative phase separation can occur, like in the case where there is electrostatic attraction as well as hydrophobic; this and other types of phase separation phenomena are described. Except for linear ionic and nonionic polymers, the interactions between surfactants and cross-linked polymers, microgel particles and covalent macroscopic gels are analyzed, as well as the possibility of forming gel particles of interest for encapsulation purposes. Furthermore, the behavior of these mixed systems on surfaces is discussed. In particular, we consider the adsorption of mixtures of ionic polymers and oppositely charged surfactants on polar and nonpolar surfaces. Depending on concentration, an ionic surfactant can either induce additional polyion adsorption or induce desorption. Kinetic control of adsorption and, in particular, desorption is typical. Important consequences of this include an increased adsorption on rinsing and path dependent adsorbed layers. Recently, considerable attention has been given to the interaction between DNA and cationic surfactant, both as a means to understand the behaviour of DNA in biological systems and to develop novel formulations, for example for gene therapy. Here we review aspects such as DNA compaction, DNA covalent gels and DNA soft nanoparticles.  相似文献   

20.
A simple method for the synthesis of linear‐chain diamond‐like nanomaterials, so‐called diamantane polymers, is described. This synthetic approach is primarily based on a template reaction of dihalogen‐substituted diamantane precursors in the hollow cavities of carbon nanotubes. Under high vacuum and in the presence of Fe nanocatalyst particles, the dehalogenated radical intermediates spontaneously form linear polymer chains within the carbon nanotubes. Transmission electron microscopy reveals the formation of well‐aligned linear polymers. We expect that the present template‐based approach will enable the synthesis of a diverse range of linear‐chain polymers by choosing various precursor molecules. The present technique may offer a new strategy for the design and synthesis of one‐dimensional nanomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号