首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The biomimetic dynamic behaviours of emulsions are receiving increasing attention from the broad scientific community; however, the spatiotemporal control and functionalization of emulsions based on simple fusion-induced method is rarely mentioned. A design for protein-stabilized oil-in-water droplets and phospholipid-stabilized oil-in-water droplets is described and a substance-diffusion-mediated fusion mechanism proposed within these two different emulsion communities. Significantly, a range of fusion-induced high-order behaviours were successfully demonstrated including competitive fusion, fusion-induced evolution in membrane complexity, and diversified structures with the formation of Janus or various patchy morphologies, fusion-induced membrane maturation, as well as fusion-induced multifunctionalization with a directional motility behaviour. These results highlight the fusion-induced diverse dynamic behaviours in complex emulsions communities and provide a platform for advancing versatile applications of emulsions.  相似文献   

2.
Supramolecular hydrogels are expected to have applications as novel soft materials in various fields owing to their designable functional properties. Herein, we developed an in situ synthesis of supramolecular hydrogelators, which can trigger gelation of an aqueous solution without the need for temperature change. This was achieved by mixing two precursors, which induced the synthesis of a supramolecular gelator and its instantaneous self‐assembly into nanofibers. We then performed the in situ synthesis of this supramolecular gelator at an oil/water interface to produce nanofibers that covered the surfaces of the oil droplets (nanofiber‐stabilized oil droplets). External stimuli induced fusion of the droplets owing to disassembly of the gelator molecules. Finally, we demonstrated that this stimuli‐induced droplet fusion triggered a synthetic reaction within the droplets. This means that the confined nanofiber‐stabilized droplets can be utilized as stimuli‐responsive microreactors.  相似文献   

3.
A laboratory study was conducted to evaluate the effect of pH on the stability of oil-in-water emulsions stabilized by a commercial splittable surfactant Triton SP-190 by comparison with the results obtained by a common surfactant Triton X-100. The emulsion stability was explored by measuring the volume of oil phase separated and the size of the dispersed droplets. It was found that the addition of inorganic acids did not significantly affect the stability of emulsions stabilized by Triton X-100, but had a profound influence on the stability of emulsions stabilized by Triton SP-190. Moreover, the droplet size of a Triton X-100-stabilized emulsion and its dynamic interfacial activity were insensitive to acids. However, at lower pH the droplet size of the emulsions stabilized by Triton SP-190 was considerably increased. From the dynamic interfacial tension measurements the dynamic interfacial activity of Triton SP-190 at the oil/water interface was found to be strongly inhibited by the addition of acids, resulting in a slower decreasing rate of dynamic interfacial tension. The results demonstrate that the dramatic destabilization of Triton SP-190-stabilized emulsions could be realized by the use of acids, which evidently changed the interfacial properties of the surfactant and resulted in a higher coalescence rate of oil droplets.  相似文献   

4.
Water‐in‐oil (w/o) emulsions were prepared with phosphatidylcholine‐depleted lecithin or polyglycerol polyricinoleate (PGPR) as emulsifying agents. The effect of different laboratory emulsification devices and the effect of sodium chloride on particle size distribution, coalescence stability, and water droplet sedimentation were investigated. The properties of lecithin‐stabilized w/o emulsions were found to depend more strongly on the emulsifying method than those prepared with PGPR. The rotor‐stator system was not suitable for preparing stable w/o emulsions with lecithin. Whereas the addition of salt was essential to achieve coalescence‐stable emulsions prepared with PGPR, the presence of NaCl favored the coalescence of water droplets and phase separation in emulsions containing lecithin.  相似文献   

5.
Effects of substituting native beta-lactoglobulin B (beta-lactoglobulin) with heat-treated beta-lactoglobulin as emulsifier in oil in water emulsions were investigated. The emulsions were prepared with a dispersed phase volume fraction of Phi=0.6, and accordingly, oil droplets rather closely packed. Native beta-lactoglobulin and beta-lactoglobulin heated at 69 degrees C for 30 and 45 min, respectively, in aqueous solution at pH 7.0 were compared. Molar mass determination of the species formed upon heating as well as measurements of surface hydrophobicity and adsorption to a planar air/water interface were made. The microstructure of the emulsions was characterized using confocal laser scanning microscopy, light scattering measurements of oil droplet sizes, and assessment of the amount of protein adsorbed to surfaces of oil droplets. Furthermore, oil droplet interactions in the emulsions were quantified rheologically by steady shear and small and large amplitude oscillatory shear measurements. Adsorption of heated and native beta-lactoglobulin to oil droplet surfaces was found to be rather similar while the rheological properties of the emulsions stabilized by heated beta-lactoglobulin and the emulsions stabilized by native beta-lactoglobulin were remarkably different. A 200-fold increase in the zero-shear viscosity and elastic modulus and a 10-fold increase in yield stress were observed when emulsions were stabilized by heat-modified beta-lactoglobulin instead of native beta-lactoglobulin. Aggregates with a radius of gyration in the range from 25 to 40 nm, formed by heating of beta-lactoglobulin, seem to increase oil droplet interactions. Small quantities of emulsifier substituted with aggregates have a major impact on the rheology of oil in water emulsions that consist of rather closely packed oil droplets.  相似文献   

6.
The aim of this works is to study an oil-in-water emulsion stabilized with a triblock copolymer Synperonic F127 which presents a double size distribution of oil droplets. The emulsions were studied experimentally by means of differential scanning calorimetry (DSC) and dynamic light scattering (DLS). The DSC analysis was carried out focusing on the cooling behavior of the emulsion. The cooling thermograms of the oil-in-water emulsion revealed two crystallization peaks with Gaussian profile; the interesting characteristic is that both peaks are separated in temperature. In accordance to previous works for a single oil dispersed within an aqueous phase, the DSC technique must show a single Gaussian peak of crystallization attributable to a size distribution of droplets. In the present case of emulsions stabilized with 1 g/L of Synperonic F127, the aggregation behavior of triblock as a function of temperature allows to produce an emulsion with a double size droplet distribution. Comparison with emulsions stabilized with 2 and 4 wt% of non-ionic Tween 20 are also presented.  相似文献   

7.
Transitions in structure of sodium caseinate stabilized emulsions were studied using conventional rheometry as well as diffusing wave spectroscopy (DWS). Structural differences were induced by different amounts of stabilizer, and transitions in structure were induced by acidification. Special attention was given to the sol-gel transition. In this study the criterion of the sol-gel transition being frequency independent was verified for emulsions using DWS. It was shown that this sol-gel transition did not correspond to the so-called ergodic-nonergodic transition. Differences, as a function of the pH, were found for emulsions containing different amounts of stabilizer. The emulsion droplets in an emulsion without extra stabilizer formed a continuous network upon acidification, while the droplets in emulsions with an excess of stabilizer formed a network of oil droplets at neutral pH. Upon acidification of the latter one, the initial network of oil droplets fell apart, and eventually a network of sodium caseinate, in which the oil droplets were embedded, was formed. This caused the appearance of two sol-gel transitions. The breaking of the initial network as well as the network formation of sodium caseinate in time was observed by DWS.  相似文献   

8.
Oil in water emulsions prepared by dispersion of silicone oils into an aqueous solution of hydroxylpropyl methyl cellulose (HPMC) or poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers were characterized by measurements of steady-state shear viscosities, dynamic moduli, and stress-strain sweep curves coupled with optical microscopic observation. The emulsions prepared with HPMC showed solidlike viscoelastic responses and a clear yield stress, whereas the emulsions emulsified by PEO-PPO-PEO block copolymers indicated liquidlike viscoelastic behavior. The difference should be attributed to stronger protective colloidal effects, that is, the former emulsifiers form a more viscoelastic polymer layer adsorbed on the oil droplets than the latter ones. Moreover, the simultaneous optical microscopic observation showed that the emulsions stabilized by HPMC do not flow below the yield stress and beyond the yield stress the movements of oil droplets occur first.  相似文献   

9.
We investigated the phase inversion of Pickering emulsions stabilized by plate-shaped clay particles. Addition of water induced a phase inversion from a water-in-oil (W/O) emulsion to an oil-in-water (O/W) emulsion when the amount of the oil phase exceeded a limiting amount of oil absorption to solid particles. On the other hand, a phase inversion from a powdery state to an O/W emulsion state through an oil-separated state is observed when the amount of an oil phase is less than the limiting amount of the oil absorption. Interestingly, the oil separated is re-dispersed as emulsion droplets into the O/W emulsion phase. This type of phase inversion, which is a feature of the Pickering emulsions stabilized by the clay particles, is caused by a change in the aggregate structures of particles.  相似文献   

10.
Globally, efficient oil‐water separation for surfactant‐stabilized oil‐water emulsions has been in urgent demand. The current options available for separation are neither sustainable nor resistant to fouling. Herein, we introduce a hierarchically nanostructured TiO2/Fe2O3 composite membrane, which is capable of separating surfactant‐stabilized oil‐water emulsions with high separation efficiency. The high oil rejection rate is contributed by the acquisition of an interconnected delicate network and underwater superoleophobic interface. Meanwhile, its self‐cleaning function promote the facile recovery of the contaminated membrane. Furthermore, the mechanical flexible characteristic of the TiO2/Fe2O3 composite membrane widens its applicability in industrial employment. Thanks to these properties, this novel membrane can be considered as a practical option for treating surfactant‐stabilized oil‐water emulsions.  相似文献   

11.
The influence of oil type (n-hexadecane, 1-decanol, n-decane), droplet composition (hexadecane:decanol), and emulsifier type (Tween 20, gum arabic) on droplet growth in oil-in-water emulsions was studied. Droplet size distributions of emulsions were measured over time (0-120 h) by laser diffraction and ultrasonic spectroscopy. Emulsions containing oil molecules of low polarity and low water solubility (hexadecane) were stable to droplet growth, irrespective of the emulsifier used to stabilize the droplets. Emulsions containing oil molecules of low polarity and relatively high water solubility (decane) were stable to coalescence, but unstable to Ostwald ripening, irrespective of emulsifier. Droplet growth in emulsions containing oil molecules of relatively high polarity and high water solubility (decanol) depended on emulsifier type. Decanol droplets stabilized by Tween 20 were stable to droplet growth in concentrated emulsions but unstable when the emulsions were diluted. Decanol droplets stabilized by gum arabic exhibited rapid and extensive droplet growth, probably due to a combination of Ostwald ripening and coalescence. We proposed that coalescence was caused by the relatively low interfacial tension at the decanol-water boundary, which meant that the gum arabic did not absorb strongly to the droplet surfaces and therefore did not prevent the droplets from coming into close proximity.  相似文献   

12.
A thermoresponsive Poly(N‐isopropylacrylamide) (PNIPAAm)‐modified nylon membrane was fabricated via hydrothermal route. Combining rough structure, proper pore size, and thermoresponsive wettability, the membrane can separate at least 16 types of stabilized oil‐in‐water and water‐in‐oil emulsions at different temperatures. Below the LCST (ca. 25 °C), the material exhibits hydrophilicity and underwater superoleophobicity, which can be used for the separation of various kinds of oil‐in‐water emulsions. Above the LCST (ca. 45 °C), the membrane shows the opposite property with high hydrophobicity and superoleophilicity, and it can then separate stabilized water‐in‐oil emulsions. The material exhibits excellent recyclability and high separation efficiency for various kinds of emulsions and the hydrothermal method is facile and low‐cost. The membrane shows good potential in real situations such as on‐demand oil‐spill cleanup, industrial wastewater treatment, remote operation of oil/water emulsion separation units, and fuel purification.  相似文献   

13.
Abstract

In this study, we are introducing a method that can effectively stabilize antioxidants in water‐in‐oil‐in‐water (W/O/W) double emulsions. Preliminarily, stable W/O/W double emulsions were produced by manipulating the characteristics of internal aqueous phase via two‐stage emulsification, resulting consequently in the formation of fine internal water droplets in the dispersed oil droplets. From conductivity measurements that can determine the elution amount of internal aqueous phase, it was confirmed that the double emulsion stability could be improved by treating the internal aqueous phase with a hydroxypropyl‐beta‐cyclodextrin. In this study, kojic acid, 5‐hydroxy‐2‐(hydroxymethyl)‐4‐pyrone was selected as a model antioxidant. The stabilization of kojic acid was attempted by locating it in the internal water droplets of the stable W/O/W double emulsions. The stability of kojic acid in the double emulsion system could be maintained at 90% for 10 weeks at high temperature. We believe that these stable W/O/W double emulsions could be used meaningfully as a carrier for many unstable antioxidants.  相似文献   

14.
Surface‐inactive, highly hydrophilic particles are utilized to effectively and reversibly stabilize oil‐in‐water emulsions. This is a result of attractive van der Waals forces between particles and oil droplets in water, which are sufficient to trap the particles in close proximity to oil–water interfaces when repulsive forces between particles and oil droplets are suppressed. The emulsifying efficiency of the highly hydrophilic particles is determined by van der Waals attraction between particle monolayer shells and oil droplets enclosed therein and is inversely proportional to the particle size, while their stabilizing efficiency is determined by van der Waals attraction between single particles and oil droplets, which is proportional to the particle size. This differentiation in mechanism between emulsification and stabilization will significantly advance our knowledge of emulsions, thus enabling better control and design of emulsion‐based technologies in practice.  相似文献   

15.
Surface‐inactive, highly hydrophilic particles are utilized to effectively and reversibly stabilize oil‐in‐water emulsions. This is a result of attractive van der Waals forces between particles and oil droplets in water, which are sufficient to trap the particles in close proximity to oil–water interfaces when repulsive forces between particles and oil droplets are suppressed. The emulsifying efficiency of the highly hydrophilic particles is determined by van der Waals attraction between particle monolayer shells and oil droplets enclosed therein and is inversely proportional to the particle size, while their stabilizing efficiency is determined by van der Waals attraction between single particles and oil droplets, which is proportional to the particle size. This differentiation in mechanism between emulsification and stabilization will significantly advance our knowledge of emulsions, thus enabling better control and design of emulsion‐based technologies in practice.  相似文献   

16.
Taking advantage of the formation and assembly of cellulose nanocrystal surfactants (CNCSs) at the water–oil interface, where polar cellulose nanocrystals (CNCs) and end‐functionalized polymer chains interact, the preparation and stability of emulsions prepared with CNCSs were investigated. The packing density of CNCSs at the interface can be adjusted by tuning parameters such as pH, ionic strength, and concentration/molecular weight of the end‐functionalized polymer ligands. Stable non‐spherical emulsions are obtained during homogenization, as a result of the interfacial jamming of CNCSs, with pH‐triggered reconfigurability. Porous materials are prepared by freeze‐drying creamed, CNCS‐stabilized emulsions. The cells of the porous materials have a controlled pore size and shape that are commensurate with the droplets in the emulsion and are responsive to pH. The behavior of the adaptive, reconfigurable supracolloidal system is coupled to its internal and surrounding environment.  相似文献   

17.
We report on the preparation of a novel type of particle-stabilized oil-in-water emulsions. The emulsification mechanism comprises partial hydrolysis of the oil phase promoted by the alkaline surface of ellipsoidal hematite colloids stabilized by tetramethylammonium hydroxide. This mechanism yields monodisperse oil droplets with embedded single ellipsoidal particles. The emulsions, which are stable for at least several months, can be polymerized by radical initiation, to yield latex-like particles with interesting optical and magnetic properties due to their anisotropic hematite cores. Moreover, we show that complex composite core-shell colloids can be prepared by PMMA growth and silica deposition on polymerized emulsion droplets. Finally, as an example of a possible application for our system, we have measured translational and rotational diffusion coefficients of hematite-stabilized oil droplets by depolarized dynamic light scattering. The latter technique can also be employed to monitor the spontaneous emulsification in time.  相似文献   

18.
Water transportation through the oil phase in W/O emulsions and in W1/O/W2 systems (W/O emulsion in contact with water) was examined. Substance diffusion through interfaces led to interface instability and spontaneous emulsification which caused nanodispersion formation. The photomicrographs of Pt/C replicas of emulsions showed the presence in the continuous oil phase a lot of nanodispersion droplets with a diameter in the range 17-25 nm. Diffusion coefficient (D) of water calculated on the base of Lifshiz-Slezov-Wagner (LSW) equation was about 15 times lower than the coefficients of molecular diffusion. Since such emulsions were extremely unstable toward coalescence, the growth of water droplets took place through as Ostwald ripening as coalescence. In three-phase W1/O/W2 systems diffusion of water, Rhodamine C, and ethanol was studied. D calculated on the base of the equation of nonstationary diffusion were approximately 1000 times lower than molecular ones. It was assumed, that nanodispersion droplets were more likely water carriers in investigated W/O emulsions stabilized by sorbitan monooleate.  相似文献   

19.
Water and oil transport in emulsified systems is far from being elucidated. Calorimetric analysis has proved to be an appropriate technique to study composition ripening in mixed water in oil emulsions. In this article, the role of the stabilizing agent is studied and particular attention is given to emulsions stabilized solely with solid particles. Mixed emulsions are prepared by mixing two simple water-in-oil (W/O) emulsions, one with pure water droplets and one with droplets containing an aqueous urea solution. At different time intervals, a sample is introduced in a calorimeter cell and submitted to successive cooling and heating cycles. During the cooling phase, the aqueous internal phase solidifies at a temperature which depends on its composition. Just after the mixed emulsion was prepared, the calorimetric experiment identified two solidification peaks, one corresponding to pure water droplets, and the other one to urea solutions. After a long enough stabilization time, just one peak was observed, showing that the systems evolved toward one type of droplets characterized by a unique composition, due to water transfer between the two aqueous phases. The effect of emulsion stabilizing agent (particles or nonionic emulsifier) on the kinetics of water transfer was investigated.  相似文献   

20.
Novel oil‐in‐water (O/W) emulsions are prepared which are stabilised by a cationic surfactant in combination with similarly charged alumina nanoparticles at concentrations as low as 10?5 m and 10?4 wt %, respectively. The surfactant molecules adsorb at the oil‐water interface to reduce the interfacial tension and endow droplets with charge ensuring electrical repulsion between them, whereas the charged particles are dispersed in the aqueous films between droplets retaining thick lamellae, reducing water drainage and hindering flocculation and coalescence of droplets. This stabilization mechanism is universal as it occurs with different oils (alkanes, aromatic hydrocarbons and triglycerides) and in mixtures of anionic surfactant and negatively charged nanoparticles. Further, such emulsions can be switched between stable and unstable by addition of an equimolar amount of oppositely charged surfactant which forms ion pairs with the original surfactant destroying the repulsion between droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号