首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ruthenium-catalysed azide–alkyne cycloaddition (RuAAC) provides access to 1,5-disubstituted 1,2,3-triazole motifs in peptide engineering applications. However, investigation of this motif as a disulfide mimetic in cyclic peptides has been limited, and the structural consequences remain to be studied. We report synthetic strategies to install various triazole linkages into cyclic peptides through backbone cyclisation and RuAAC cross-linking reactions. These linkages were evaluated in four serine protease inhibitors based on sunflower trypsin inhibitor-1. NMR and X-ray crystallography revealed exceptional consensus of bridging distance and backbone conformations (RMSD<0.5 Å) of the triazole linkages compared to the parent disulfide molecules. The triazole-bridged peptides also displayed superior half-lives in liver S9 stability assays compared to disulfide-bridged peptides. This work establishes a foundation for the application of 1,5-disubstituted 1,2,3-triazoles as disulfide mimetics.  相似文献   

2.
3.
The macrocyclization of linear peptides is very often accompanied by significant improvements in their stability and biological activity. Many strategies are available for their chemical macrocyclization, however, enzyme‐mediated methods remain of great interest in terms of synthetic utility. To date, known macrocyclization enzymes have been shown to be active on both peptide and protein substrates. Here we show that the macrocyclization enzyme of the cyanobactin family, PatGmac, is capable of macrocyclizing substrates with one, two, or three 1,4‐substituted 1,2,3‐triazole moieties. The introduction of non‐peptidic scaffolds into macrocycles is highly desirable in tuning the activity and physical properties of peptidic macrocycles. We have isolated and fully characterized nine non‐natural triazole‐containing cyclic peptides, a further ten molecules are also synthesized. PatGmac has now been shown to be an effective and versatile tool for the ring closure by peptide bond formation.  相似文献   

4.
The design of disulfide bond mimetics is an important strategy for optimising cysteine‐rich peptides in drug development. Mimetics of the drug lead conotoxin MrIA, in which one disulfide bond is selectively replaced of by a 1,4‐disubstituted‐1,2,3‐triazole bridge, are described. Sequential copper‐catalyzed azide–alkyne cycloaddition (CuAAC; click reaction) followed by disulfide formation resulted in the regioselective syntheses of triazole–disulfide hybrid MrIA analogues. Mimetics with a triazole replacing the Cys4–Cys13 disulfide bond retained tertiary structure and full in vitro and in vivo activity as norepinephrine reuptake inhibitors. Importantly, these mimetics are resistant to reduction in the presence of glutathione, thus resulting in improved plasma stability and increased suitability for drug development.  相似文献   

5.
Making circles with N and O : Cyclic tripeptides containing an unnatural Cα‐tetrasubstituted THF amino acid are prepared by copper(I) and palladium(0)‐catalyzed N‐ and O‐arylation reactions. The reactions give access to side chain‐modified derivatives of the unnatural amino acid and macrocyclic peptidomimetics.

  相似文献   


6.
Biaryl‐bridged cyclic peptides comprise an intriguing class of structurally diverse natural products with significant biological activity. Especially noteworthy are the antibiotics arylomycin and its synthetic analogue G0775, which exhibits potent activity against Gram‐negative bacteria. Herein, we present a simple, flexible, and reliable strategy based on activating‐group‐assisted catalytic oxidative coupling for assembling biaryl‐bridged cyclic peptides from natural amino acids. The synthetic approach was utilized for preparing a number of natural and unnatural biaryl‐bridged cyclic peptides, including arylomycin/G0775 and RP 66453 cyclic cores.  相似文献   

7.
Peptide‐derived protease inhibitors are an important class of compounds with the potential to treat a wide range of diseases. Herein, we describe the synthesis of a series of triazole‐containing macrocyclic protease inhibitors pre‐organized into a β‐strand conformation and an evaluation of their activity against a panel of proteases. Acyclic azido–alkyne‐based aldehydes are also evaluated for comparison. The macrocyclic peptidomimetics showed considerable activity towards calpain II, cathepsin L and S, and the 20S proteasome chymotrypsin‐like activity. Some of the first examples of highly potent macrocyclic inhibitors of cathepsin S were identified. These adopt a well‐defined β‐strand geometry as shown by NMR spectroscopy, X‐ray analysis, and molecular docking studies.  相似文献   

8.
We present here an efficient alternative to N‐methylation for the purpose of morphing protein‐binding peptides into more serum‐stable and cell‐permeable compounds. This involves the incorporation of a cycloalanine (CyAla) into a peptide in a way that avoids difficult coupling steps. We demonstrate the utility of this chemistry in creating a cell‐permeable derivative of a high‐affinity HIV Rev protein‐binding peptide.  相似文献   

9.
The cyclic decapeptide gramicidin S (GS) was used as a model for the evaluation of four turn mimetics. For this purpose, one of the D ‐Phe‐Pro two‐residue turn motifs in the rigid cyclic β‐hairpin structure of GS was replaced with morpholine amino acids (MAA 2 – 5 ), differing in stereochemistry and length of the side‐chain. The conformational properties of the thus obtained GS analogues ( 6 – 9 ) was assessed by using NMR spectroscopy and X‐ray crystallography, and correlated with their biological properties (antimicrobial and hemolytic activity). We show that compound 8 , containing the dipeptide isostere trans‐MAA 4 , has an apparent high structural resemblance with GS and that its antibacterial activity against a panel of Gram positive and ‐negative bacterial strains is better than the derivatives 6 , 7 and 9 .  相似文献   

10.
Fooling enzymes with mock amides : Analogues of apicidin, a cyclic‐tetrapeptide inhibitor of histone deacetylase (HDAC), were designed with a 1,4‐ or 1,5‐disubstituted 1,2,3‐triazole in place of a backbone amide bond to fix the bond in question in either a trans‐like or a cis‐like configuration. Thus, the binding affinity of distinct peptide conformations (see picture) could be probed. One analogue proved in some cases to be superior to apicidin as an HDAC inhibitor.

  相似文献   


11.
An oligonucleotide of triazole‐linked RNA (TLRNA) was synthesized by performing consecutive copper‐catalyzed azide‐alkyne cycloaddition reactions for elongation. The reaction conditions that had been optimized for the synthesis of 3‐mer TLRNA were found to be inappropriate for longer oligonucleotides, and the conditions were reoptimized for the solid‐phase synthesis of an 11‐mer TLRNA oligonucleotide. Duplex formation of the 11‐mer TLRNA oligonucleotide was examined with the complementary oligonucleotide of natural RNA to reveal the effects of the 2′‐OH groups on the duplex stability.  相似文献   

12.
Many neurodegenerative diseases, like Parkinson’s, Alzheimer’s, or Huntington’s disease, occur as a result of amyloid protein fibril formation and cell death induced by this process. Cyclic peptides (CPs) and their derivatives form a new class of powerful inhibitors that prevent amyloid fibrillation and decrease the cytotoxicity of aggregates. The strategies for designing CPs are described, with respect to their amino acid sequence and/or conformational similarity to amyloid fibrils. The implications of CPs for the study and possible treatment of amyloid‐related diseases are discussed.  相似文献   

13.
14.
15.
The use of synthetic bridges as surrogates for disulfide bonds has emerged as a practical strategy to obviate the poor stability of some disulfide‐containing peptides. However, peptides incorporating large‐span synthetic bridges are still beyond the reach of existing methods. Herein, we report a native chemical ligation (NCL)‐assisted diaminodiacid (DADA) strategy that enables the robust generation of disulfide surrogate peptides incorporating surrogate bridges up to 50 amino acids in length. This strategy provides access to some highly desirable but otherwise impossible‐to‐obtain disulfide surrogates of bioactive peptide. The bioactivities and structures of the synthetic disulfide surrogates were verified by voltage clamp assays, NMR, and X‐ray crystallography; and stability studies established that the disulfide replacements effectively overcame the problems of disulfide reduction and scrambling that often plague these pharmacologically important peptides.  相似文献   

16.
Disulfide bonds have frequently been incorporated into synthetic materials to promote sensitivity of the systems towards different redox environments. Although many strategies have been developed to rationally tune the stability of disulfide linkers, methods to tune their responsiveness towards different redox environments remain elusive. In this work we have developed and explored a disulfide linker bearing two independent disulfide bonds, referred to as a twin‐disulfide linker. We have demonstrated that the twin‐disulfide linker displays an ultrahigh stability at lower concentrations of reducing agent or in weakly reducing environments without a significant compromise in the sensitivity of its response to highly reducing environments such as cytoplasm, a feature that is in remarkable contrast to the traditional single disulfide bonds. Such an extraordinary responsiveness arises from the cooperativity of the twin‐disulfide bonds, which should be of particular interest for applications such as controlled drug delivery and sensing, because relatively large differences in disulfide stability in different redox environments is desired in these applications.  相似文献   

17.
Developing macrocyclic peptides that can reach intracellular targets is a significant challenge. This review discusses the most recent strategies used to develop cell permeable cyclic peptides that maintain binding to their biological target inside the cell. Macrocyclic peptides are unique from small molecules because traditional calculated physical properties are unsuccessful for predicting cell membrane permeability. Peptide synthesis and experimental membrane permeability is the only strategy that effectively differentiates between cell permeable and cell impermeable molecules. Discussed are chemical strategies, including backbone N-methylation and stereochemical changes, which have produced molecular scaffolds with improved cell permeability. However, these improvements often come at the expense of biological activity as chemical modifications alter the peptide conformation, frequently impacting the compound's ability to bind to the target. Highlighted is the most promising approach, which involves side-chain alterations that improve cell permeability without impact binding events.  相似文献   

18.
c‐di‐GMP is an attractive target in the fight against bacterial infections since it is a near ubiquitous second messenger that regulates important cellular processes of pathogens, including biofilm formation and virulence. Screening of a combinatorial peptide library enabled the identification of the proline‐rich tetrapeptide Gup‐Gup‐Nap‐Arg, which binds c‐di‐GMP selectively over other nucleotides in water. Computational and CD spectroscopic studies provided a possible binding mode of the complex and enabled the design of a pentapeptide with even higher binding strength towards c‐di‐GMP. Biological studies showed that the tetrapeptide inhibits biofilm growth by the opportunistic pathogen P. aeruginosa.  相似文献   

19.
20.
Protein–protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A–D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure‐based design of PPI inhibitors through stabilizing or mimicking turns, β‐sheets, and helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号