首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactivity ratios for the important acrylamide (AAm)/acrylic acid (AAc) copolymerization system exhibit considerable scatter in previously published literature, and therefore, there is a need for more definitive values for these reactivity ratios. An appropriate methodology, based on the error‐in‐variables‐model (EVM) framework along with a direct numerical integration procedure, is applied in order to determine reliable reactivity ratios. The reliability of the results is confirmed with extensive and independent replication. Furthermore, via an EVM‐based criterion for the design of experiments using mechanistic models, optimal feed compositions are calculated, and from these optimal reactivity ratios are estimated for the first time (rAAm = 1.33 and rAAc = 0.23) based on information from the full conversion range. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4819–4827  相似文献   

2.
Styrene-terminated poly(2-acetoxyethyl methacrylate) macromonomer (EBA), methacrylate-terminated poly(2-acetoxyethyl methacrylate) macromonomer (MPA), and methacrylate-terminated poly(methyl methacrylate) macromonomer (MPM) were synthesized and subjected to polymerization and copolymerization by a free-radical polymerization initiator (AIBN). EBA and MPA were homopolymerized at various concentrations. EBA exhibited higher reactivity than styrene. The reactivity of MPA, however, was almost equal to that of glycidyl methacrylate. Cumulative copolymer compositions were determined by GPC analysis of copolymerization products. The reactivity ratios estimated were ra = 0.95 and rb , = 0.90 for EBA macromonomer (a)-methyl methacrylate (b) copolymerization. These values were not consistent with literature values for the styrene-methyl methacrylate and p-methoxy-styrene-methyl methacrylate systems. The reactivity ratios estimated for MPA and 2-bromoethyl methacrylate were ra - 0.95 and rb , = 0.98; equal to the glycidyl methacrylate-2-bromoethyl methacrylate system. MPA or MPM was also copolymerized with styrene, and the reactivity ratios were ra = 0.40, ra = 0.60 and ra = 0.39, ra = 0.58, respectively. These estimates were in good agreement with the reactivity ratios for glycidyl methacrylate and styrene. Thus, no effect of molecular weight was observed for both copolymerization systems.  相似文献   

3.
Ternary monomer reactivity ratios of triisopropylsilyl acrylate (SiA), methyl methacrylate (MMA), and n‐butyl acrylate (BA), as common monomers in self‐polishing coatings (SPCs) binders are obtained using experimental data collected from free radical bulk polymerization at 70 °C. Different terpolymerizations at low and medium‐high conversions are performed at optimized feed compositions. Estimations are made using the error‐in‐variables model (EVM) framework, applying the recast form of the Alfrey–Goldfinger (AG) model and a direct numerical integration (DNI) approach to the collected data. Estimations from individual low and medium‐high conversion data are compared to those found with the combined data (full conversion range data). The highest certainty in point estimates are obtained with analysis of the full conversion range data. Furthermore, the reactivity ratios determined from the combined data fall between those found with analysis of individual low and medium‐high conversion data, another corroboration of reliable data collection. Reactivity ratios determined from analysis of the combined data (rSiA/MMA = 0.4185, rMMA/SiA = 1.3754, rSiA/BA = 0.8739, rBA/SiA = 0.5736, rBA/MMA = 0.3692, rMMA/BA = 1.7919) are used in the recast AG model to predict cumulative terpolymer composition as a function of conversion. The experimental data and model prediction show satisfactory agreement.  相似文献   

4.
A computerized version of the Fineman-Ross linearization procedure was used to determine reactivity ratios for copolymerization of vinyl chloride (monomer 1) and 2-methylpentyl vinyl brassylate (monomer 2). From differential refractometry data for the products of low-conversion copolymerization, the procedure gave r1 = 1.06 and r2 = 0.234. The ratios computed from chlorine contents of the same products were r1 = 1.10 and r2 = 0.239. The polarity factor (e2) and general monomer reactivity (Q2) calculated for monomer 2 from these ratios were, respectively, ?0.95 to ?0.98 and 0.032–0.033. The interquartile range for the copolymerization of a mixture of 60% monomer 1 and 40% monomer 2 was 1.4%. These values suggest that from suitable proportions of reactants, sufficiently homogeneous distribution of monomers can be achieved in copolymers of vinyl chloride and 2-methylpentyl vinyl brassylate to offer the possibility of effective internal plasticization.  相似文献   

5.
(Vinyl acetate)/(ethyl acrylate) (V/E) and (vinyl acetate)/(butyl acrylate) (V/B) copolymers were prepared by free radical solution polymerization. 1H-NMR spectra of copolymers were used for calculation of copolymer composition. The copolymer composition data were used for determining reactivity ratios for the copolymerization of vinyl acetate with ethyl acrylate and butyl acrylate by Kelen-Tudos (KT) and nonlinear Error in Variables methods (EVM). The reactivity ratios obtained are rv = 0.03 ± 0.03, rE = 4.68 ± 1.70 (KT method); rv = 0.03 ± 0.01, rE = 4.60 ± 0.65 (EV method) for (V/E) copolymers and rv ? 0.03 ± 0.01, rB ? 6.67 ± 2.17 (KT method); rv = 0.03 ± 0.01, rB = 7.43 ± 0.71 (EV method) for (V/B) copolymers. Microstructure was obtained in terms of the distribution of V- and E-centered triads and V- and B-centered triads for (V/E) and (V/B) copolymers respectively. Homonuclear 1H 2D-COSY NMR spectra were also recorded to ascertain the existence of coupling between protons in (V/E) as well as (V/B) copolymers. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Glycidylmethacrylate/vinyl acetate copolymers were prepared by solution polymerization with benzene as a solvent and benzoyl peroxide as an initiator. Copolymer compositions were determined from 1H NMR spectra, and comonomer reactivity ratios were determined by the Kelen–Tudos (KT) method and the nonlinear least‐squares error‐in‐variable method (EVM). The reactivity ratios obtained from KT and EVM were rG = 37.4 ± 12.0 and rV = 0.036 ± 0.019 and rG = 35.2 and rV = 0.03, respectively. Complete spectral assignments of 13C and 1H NMR spectra were done with the help of distortionless enhancement by polarization transfer and two‐dimensional 13C–1H heteronuclear single quantum coherence and total correlation spectroscopy. The methyl, methine, and methylene carbon resonance showed both stereochemical and compositional sensitivity. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4051–4060, 2001  相似文献   

7.
The impact of reactivity ratios determined with the Nelder and Mead simplex method on the kinetic‐model discrimination and the solvent‐effect determination for the styrene/acrylonitrile monomer system was investigated. For the monomer system, the penultimate unit effect was inversely proportional to the polarity of the solvent: acetonitrile < N,N‐dimethylformamide < methyl ethyl ketone < toluene. Quantitatively, the penultimate unit effect could be correlated with an absolute value of the difference between the standard deviation of the reactivity ratios determined for the terminal and penultimate models. By application of the F test, the penultimate model was justified for copolymerization in toluene. The conclusion was less certain for polymerization in methyl ethyl ketone. With a scanning procedure based on the simplex method, it was found that an equivalent representation of the copolymer‐composition data could be achieved with multiple sets of penultimate‐model reactivity ratios. However, the relationship between the triad‐sequence distribution and copolymer composition depended on the reactivity‐ratio set chosen for the microstructure determination. The microstructure calculated with the penultimate‐model reactivity ratios determined with the simplex method from the initial guess (r11 = r1, r21 = 1/r2, r22 = r2, r12 = 1/r1) did not obey the general “bootstrap effect” rule. This observation still requires some theoretical interpretation. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 846–854, 2000  相似文献   

8.
A method for the determination of reactivity ratios from conversion–composition data has been outlined. The conversion–composition changes during the copolymerization of styrene (M1) and methyl methacrylate (M2) have been studied at 60°C. By a method of graphical intersection, the integrated form of Skeist's equation has been used to determine the reactivity ratios (r1 = 0.54 ± 0.02 and r2 = 0.50 ± 0.06) in reasonably good agreement with values reported in the literature. The area of intersection was used as a measure of the precision of the data.  相似文献   

9.
The monomer reactivity ratios (MMRs) in radical copolymerization for styrene and methyl methacrylate were recalculated by five different methods using literature copolymerization data. The use of approximate 95% confidence limits and their visual inspection helps to separate possibly biased copolymer composition data. The recalculated mean MRR values were r1 (styrene) = 0.501 ± 0.031 and r2 = 0.472 ± 0.031. The results of the linear least-squares calculation procedures seldom approach the quality of the nonlinear least-squares analysis according to the method of Tidwell and Mortimer.  相似文献   

10.
By using sodium dodecyl sulfate (SDS) and pentanol (PTL) as emulsifiers, the oil‐in‐water microemulsion containing N‐butyl maleimide (NBMI, M1) and styrene (St, M2) was prepared. The microemulsion copolymerization using potassium persulfate (KPS) as an initiator was investigated. On the basis of kinetic model proposed by SHAN Guo‐Rong, the reactivity ratios of free monomers and the charge‐transfer complex (CTC) in the copolymerization were found to be r12 = 0.0420, r21 = 0.0644, r1C = 0.00576 and r2C = 0.00785, respectively. A kinetic treatment based on this model was used to quantitatively estimate the contribution of CTC to the total copolymerization rate in the NBMI/St copolymerization. It was about 17.0–20.0% for a wide range of monomer feed ratios.  相似文献   

11.
The free-radical copolymerization of styrene and methacrylonitrile was studied in toluene solution at 60, 90, and 120°C. Copolymer composition was estimated from gas-chromatographic measurement of unreacted monomer concentrations. Reactions were carried to about 20% conversion to minimize analytical errors. Reactivity ratios were calculated by using an integrated form of the Mayo-Lewis simple copolymerization equation. Reactivity ratios were not sensitive to reaction temperature. The values at 90°C are r1 = 0.41 (methacrylonitrile) and r2 = 0.37 (styrene). The r1 values are higher than those reported by other workers, presumably because of advantages in the present analytical technique and calculation method. The negligible temperature dependence of reactivity ratios is in accord with theory. If monomer pairs exhibit pronounced dependence of reactivity ratios on polymerization temperature, this may indicate a change in mode of placement of units in the polymer chain.  相似文献   

12.
The copolymerization of 2-hydroxyethyl acrylate (HEA, M_1) and methylmethacrylate (MMA, M_2) in cyclohexanone was studied. The multiple experiments ofsolution copolymerization with low conversion were carried out at two sensitive compositionfeed points at 60, 80, 100, 120 and 140℃, respectively. The composition of the copolymerswas analyzed by ~1H-NMR. The reactivity ratios which were estimated by the Error-in-Variable Method (EVM) of Mayo-Lewis equation were found to be r_1 = 0.328, r_2 = 1.781for 60℃; 0.375, 1.709 for 80℃; 0.406, 1.654 for 100℃; 0.439, 1.540 for 120℃ and 0.455,1.400 for 140℃, and the 95% joint confidence intervals of the reactivity ratios were alsodetermined. According to r_1 and r_2, Arrhenius relations and the activity energy differencebetween the homo- and cross-propagation were calculated.  相似文献   

13.
The free radical reactivity ratios between styrene and different vinyl‐1,2,3‐triazole regioisomeric monomers in 1,4‐dioxane at 65 °C have been established using nonlinear least square method. The results obtained for the reactivity ratio between regioisomers show exceptionally different polymerization behavior, highlighting the effects of the electronic and steric factors of these regioisomeric monomers. The experimental results highlight the effects of the electronic and sterics on the copolymerization behavior. In case of 1,4‐vinyl‐triazoles, it was found that without the steric effects, the reactivity is very similar to that of styrene and forms random copolymers. However, it was found that 1,5‐vinyl‐triazoles are more reactive than 1,4‐vinyl triazoles. In the case of styrene‐co‐1,4‐vinyl‐1,2,3‐triazoles, the reactivity ratios were calculated to be rstyrene: r1‐octyl‐4‐vinyl‐triazole = 1.97:0.54, rstyrene : r1‐benzyl‐4‐vinyl‐triazole = 1.62:0.50, and rstyrene: r1‐methyl‐4‐vinyl‐triazole = 0.90:0.87. On the other hand, reactivity ratios for styrene‐co‐1,5‐vinyl‐1,2,3‐triazoles were found to be rstyrene: r1‐octyl‐5‐vinyl‐triazole = 0.13:0.66 and rstyrene: r1‐benzyl‐5‐vinyl‐triazole = 0.34:0.49. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3359–3364  相似文献   

14.
Summary The copolymerization of N,N-diethylacrylamide (Ml) with methyl acrylate (M2) was investigated and reactivity ratiosr 1= 0.41 andr 2 = 0.52 obtained. Also the distribution of diad fractions was calculated and the results were interpreted in terms of the product of reactivity ratios. The tendency of the two monomers to alternate was explained on the basis of differences in polatities between the double bonds, this explanation being supported both by the values ofe parameter and NMR spectroscopy data. A copolymerization mechanism was suggested.With 5 figures and 2 tables  相似文献   

15.
This article deals with the synthesis of hydrophilic methacrylic monomers derived from ethyl pyrrolidone [2‐ethyl‐(2‐pyrrolidone) methacrylate (EPM)] and ethyl pyrrolidine [2‐ethyl‐(2‐pyrrolidine) methacrylate (EPyM)] and their respective homopolymers. For the determination of their reactivity in radical copolymerization reactions, both monomers were copolymerized with methyl methacrylate (MMA), the reactivity ratios being calculated by the application of linear and nonlinear mathematical methods. EPM and MMA had ratios of rEPM = 1.11 and rMMA = 0.76, and this indicated that EPM with MMA had a higher reactivity in radical copolymerization processes than vinyl pyrrolidone (VP; rVP = 0.005 and rMMA = 4.7). EPyM and MMA had reactivity ratios of rEPyM = 1.31 and rMMA = 0.92, and this implied, as for the EPM–MMA copolymers, a tendency to form random or Bernoullian copolymers. The glass‐transition temperatures of the prepared copolymers were determined by differential scanning calorimetry (DSC) and were found to adjust to the Fox equation. Total‐conversion copolymers were prepared, and their behavior in aqueous media was found to be dependent on the copolymer composition. The swelling kinetics of the copolymers followed water transport mechanism case II, which is the most desirable kinetic behavior for a swelling controlled‐release material. Finally, the different states of water in the hydrogels—nonfreezing water, freezing bound water, and unbound freezing water—were determined by DSC and found to be dependent on the hydrophilic and hydrophobic units of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 395–407, 2003  相似文献   

16.
Copolymers of the cyclic ketene acetals, 2-methylene-5,5-dimethyl-1,3-dioxane, 3 , (M1) with 2-methylene-1,3-dioxolane, 4 , (M2) or 2-methylene-1,3-dioxane, 5 , (M2), were synthesized by cationic copolymerization. An experimental method was designed to study the reactivity of these very reactive and extremely acid sensitive cyclic ketene acetal monomers. The reactivity ratios, calculated using a computer program based on a nonlinear minimization algorithm, were r1 = 6.36 and r2 = 1.25 for the copolymerization of 3 with 4 , and r1 = 1.56 and r2 = 1.42 for the copolymerization of 3 with 5. FTIR and 1H-NMR spectra when combined with the values of r1 and r2 showed that these copolymers were formed by a cationic 1,2-polymerization (ring-retained) route. Furthermore the tendency existed to form very short blocks of M1 or M2 within the copolymers. Cationic copolymerization of cyclic ketene acetals have the potential to be used for synthesis of novel polymers. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
The copolymerization of 4-cyclopentene-1,3-dione (M2) with p-chlorostyrene and vinylidene chloride is reported. The copolymers were prepared in sealed tubes under nitrogen with azobisisobutyronitrile initiator. Infrared absorption bands at 1580 cm.?1 revealed the presence of a highly enolic β-diketone and indicated that copolymerization had occurred. The copolymer compositions were determined from the chlorine analyses and the reactivity ratios were evaluated. The copolymerization with p-chlorostyrene (M1) was highly alternating and provided the reactivity ratios r1 = 0.32 ± 0.06, r2 = 0.02 ± 0.01. Copolymerization with vinylidene chloride (M1) afforded the reactivity ratios r1 = 2.4 ± 0.6, r2 = 0.15 ± 0.05. The Q and e values for the dione (Q = 0.13, e = 1.37), as evaluated from the results of the vinylidene chloride case, agree closely with the previously reported results of copolymerization with methyl methacrylate and acrylonitrile and confirm the general low reactivity of 4-cyclopentene-1,3-dione in nonalternating systems.  相似文献   

18.
Radical copolymerization based on acrylonitrile (AN) and 2,2,2‐Trifluoroethyl acrylate (ATRIF) initited by AIBN was investigated in acetonitrile solution. The resulting poly(AN‐co‐ATRIF) copolymers were characterized by 1H, 13C, and 19F NMR and IR spectroscopy, and size exclusion chromatography (SEC). Their compositions were assessed by 1H NMR. The kinetics of radical copolymerization of AN with ATRIF was investigated from sereval experiments achieved at 70 °C from initial [AN]0/[ATRIF]0 molar ratios ranging between 20/80 and 80/20 and was enabled to determine the reactivity ratios of both comonomers. From the monomer—polymer copolymerization curve, the Fineman–Ross and Kelen–Tüdos laws enabled to assess the reactivity ratios (rAN= r1 = 1.25 ± 0.04 and rATRIF = r2 = 0.93 ± 0.05 at 70 °C) while the revised patterns scheme led to r12 = rAN = 1.03, and r21 = rATRIF = 0.78 at 70 °C. In all cases, rAN x rATRIF product was close to unity, which indicates that poly(AN‐co‐ATRIF) copolymers exhibit a random structure. This was also confirmed by the Igarashi's and Pyun's laws which revealed the presence of AN‐ATRIF, AN‐AN, and ATRIF‐ATRIF dyads. The Q and e values for ATRIF were also assessed (Q2 = 0.62 and e2 = 0.93). The glass transition temperature values, Tg, of these copolymers increased from 17 to 61 °C as the molar percentage of ATRIF decreased from 77 to 16% in the copolymer. Thermogravimetry analysis of poly(AN‐co‐ATRIF) copolymers showed a good thermal stability compared to that of poly(ATRIF) homopolymer due to incorporation of AN comonomer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3856–3866  相似文献   

19.
The catalyst system Nd(acac)3·2 H2O/Bu2Mg/CHCl3 shows a fairly high activity in both the homo‐ and copolymerization of isoprene (IP) and styrene (St) in toluene at 60°C. Copolymers obtained from various comonomer feed ratios were characterized by means of NMR spectroscopy and gel‐permeation chromatography. The polyisoprene and poly(IP‐co‐St) obtained predominantly consist of cis‐1,4 IP units. Monomer reactivity ratios were evaluated to be rIP = 5.4 and rSt = 0.38 in the copolymerization.  相似文献   

20.
Free radical solution copolymerization of phenyl methacrylate and N-vinyl-2-pyrrolidone was carried out using benzoyl peroxide in 2-butanone solution at 70°C. The composition of the copolymer was determined using 1H-NMR spectra by comparing the intensities of aromatic protons to that of total protons. The results were used to calculaie the copolymerization reactivity ratios by both the Fineman-Ross (F-R) and Kelen-Tüdös (K-T) methods. The reactivity ratios are r 1 = 4.49 ± 1.27 and r 2 = 0.05 ± 0.09 as determined by the K-T method. These values are in good agreement with those determined by the F-R method. The FT-infrared and 13C-NMR spectra of the copolymer are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号