首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
《Electroanalysis》2006,18(24):2458-2466
A promising electrochemical biosensor was fabricated by electrochemical grafting of ribonucleic acid (RNA) at 1.8 V (vs. SCE) on glassy carbon electrode (GCE) (denoted as RNA/GCE), for simultaneous detection of dopamine (DA) and uric acid (UA) with coexistence of excess amount of ascorbic acid (AA). The electrode was characterized by X‐ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The RNA modified layer on GCE exhibited superior catalytic ability and anionic exclusive ability in comparison with the DNA modified electrode. Three separated anodic DPV peaks were obtained at 0.312, 0.168 and ?0.016 V for UA, DA and AA, respectively, at the RNA/GCE in pH 7.0 PBS. In the presence of 2.0 mM AA, a linear range of 0.37 to 36 μM with a detection limit of 0.2 μM for DA, and in the range of 0.74 to 73 μM with a detection limit of 0.36 μM for UA were obtained. The co‐existence of 5000 fold AA did not interfere with the detection of DA or UA. The modified electrode shows excellent selectivity, good sensitivity and good stability.  相似文献   

2.
An electrochemical sensor based on modification of carbon paste electrode by glutathione‐capped copper nanoclusters silica nanoparticles (CuNCs/SiO2NPs) composite for determination of dopamine in the presence of ascorbic acid was presented. Transmission electron microscopy, scanning electron microscopy, energy dispersive X‐Ray analysis, X‐ray photoelectron spectroscopy, Fourier‐transform infrared spectroscopy, X‐ray diffraction and electrochemical impedance spectroscopy were used for characterization of the developed electrode. The electrochemical behavior of dopamine on CuNCs/SiO2NPs/carbon paste electrode was investigated by cyclic voltammetry and differential pulse voltammetry. Dopamine was determined in the range of 10.0 – 900.0 μM, and the limit of detection was obtained as 0.43 μM. The electrochemical behaviors of the coexisting electroactive species, which often cause interference with the determination of dopamine, were investigated. The results show that the developed electrode does not show any interference with respect to coexisting species, even in the presence of ascorbic acid. The developed electrochemical sensor was further employed for the determination of dopamine in human blood plasma, with a good recovery.  相似文献   

3.
An electrochemical sensor for dopamine was developed by electrodepositing poly(propylene imine) (PPI) dendrimer and gold nanoparticles (AuNPs) onto a glassy carbon electrode (GCE). Electrochemical characterisation of the sensor was carried out by cyclic voltammetry and electrochemical impedance spectroscopy in ferri/ferrocyanide electrolyte. The nanocomposite electrode (GCE-PPI-AuNPs) showed improved electroactive surface area and electrochemical response over bare GCE. The sensor recorded a detection limit of 0.16 μM over a concentration range of 0.1 μM to 125 μM. The sensor was applied for dopamine detection in human serum samples and in the presence of interfering substances such as ascorbic acid and epinephrine.  相似文献   

4.
《中国化学会会志》2018,65(9):1082-1089
In this work, a screen‐printed carbon electrode (SPCE) was modified with a cobalt/porous silicon (Co@PSi) nanocomposite powder to develop a nonenzymatic sensor for the detection of hydrogen peroxide. The Co@PSi nanocomposite was synthesized through the chemical reaction between silicon powder in a HF/HNO3 solution and cobalt cations. In this process, cobalt nanoparticles were anchored on the porous silicon. The structure and morphology of the synthesized nanocomposite were investigated by X‐ray diffraction, Fourier transform infrared spectroscopy, X‐ray photoemission spectroscopy, energy dispersive X‐ray spectroscopy, and field‐emission scanning electron microscopy. The constructed nonenzymatic, screen‐printed sensors based on the Co@PSi nanocomposite showed perfect electrocatalytic oxidation response to hydrogen peroxide over the range 1–170 and 170–3,770 μmol/L with the limit of detection of 0.8 μmol/L. In addition, the Co@PSi‐SPCE sensor exhibited good selectivity for the determination of H2O2 in the presence of common interfering species including glucose, ascorbic acid, uric acid, dopamine, nitrate, and nitrite ions. The constructed electrochemical sensor was successfully used for the determination of H2O2 in real samples.  相似文献   

5.
A modified electrode was fabricated by electrochemically deposition of Pt nanoparticles on the multiwall carbon nanotube covered glassy carbon electrode (Pt nanoparticles decorated MWCNT/GCE). A higher catalytic activity was obtained to electrocatalytic oxidation of ascorbic acid, dopamine, and uric acid due to the enhanced peak current and well‐defined peak separations compared with both, bare and MWCNT/GCE. The electrode surfaces were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS). Individual and simultaneous determination of AA, DA, and UA were studied by differential pulse voltammetry. The detection limits were individually calculated for ascorbic acid, dopamine, and uric acid as being 1.9×10?5 M, 2.78×10?8 M, and 3.2×10?8 M, respectively. In simultaneous determination, LODs were calculated for AA, DA, and UA, as of 2×10?5 M, 4.83×10?8 M, and 3.5×10?7 M, respectively.  相似文献   

6.
A novel electrode based on orange peel derived C‐dots decorated CuO nanorods (CR@C‐dot) modified lead pencil (LP) electrode has been fabricated for highly sensitive and selective monitoring of dopamine (DA). Prior to the functionalization with C‐dot, electrochemical efficacy of CR was evaluated and compared with CuO nano‐needles (CN) and nano‐spheres (CS). The morphology, surface area and composition of synthesized nanoparticles was confirmed through field emission scanning electron microscopy (FE‐SEM), N2‐adsorption‐desorption isotherm, X‐ray diffraction (XRD), Raman spectroscopy and X‐ray photoelectron spectroscopy (XPS). Our results indicated that CR has high electrocatalytic activity compared to CN and CS by expositing greater fraction of catalytic active sites, large surface area and short diffusion pathways. The electrochemical efficacy of CR is further enhanced by decorating with orange peel derived C‐dots, which surprisingly lead to the integrations of surface‐active sites with current collectors with minimum resistance by acting as an electron transport mediator and providing more surface defects. The developed CR@C‐dot sensor enables highly sensitive and selective recognition of DA detection (0.0007 μM), over good linear range (5–2250 μM) with rapid response time. the developed CR@C‐dot sensor was successfully used to monitor the DA from deboned chicken, thus suggesting reliability of the developed electrode.  相似文献   

7.
Hybrid composites ZnO/PANI were facily synthesized by a sonication process at room temperature. This procedure is non-expensive, time/energy saving and environmentally safe. The as-prepared ZnO/PANI were characterized by FTIR, UV-vis spectroscopies and SEM in order to investigate the structure and morphology of the studied composites. The samples were used to modify carbon paste electrode (CPE) in order to develop electrochemical biosensors (ZnO/PANI/CPE). The sensing properties of the nanoparticles were evaluated for dopamine, ascorbic acid and uric acid non-enzymatic detection. The effect of percentage of polyaniline in the composites and the effect of calcination on the biosensor's response were also examined in the present study. It was revealed that the existence of PANI in ZnO/PANI/CPE largely enhanced the electroactive surface area and therefore the sensitivity for electrochemical sensing. A good electrochemical behavior was noted for ZnO/40 wt% PANI-cal/CPE modified electrode toward DA, AA and UA oxidation. The electroactive surface area of the previously mentioned modified electrode (0.235 cm2) was two times higher than that of the bare electrode (0.117 cm2). The liner relationships between current intensities and concentrations were found to be 0.01–1.4 mM, 0.1–1.3 mM and 0.01–0.12 mM, with detection limit of 0.029 mM, 0.063 mM and 0.007 mM, for DA, AA and UA respectively. In the mixtures of ascorbic acid (AA), dopamine (DA) uric acid (UA) and glucose (Glu) the sensor showed high selectivity of DA with low interference of ascorbic acid by a current change of 14 %. The as-prepared ZnO/PANI/CPE biosensor displayed a good reproducibility and stability.  相似文献   

8.
PtRu nanoparticles were supported on multiwall carbon nanotubes (MWNTs), which were further fabricated as an electrode for nonenzymatic glucose sensing. Transmission electron microscope and X‐ray diffraction patterns were used for characterization of the PtRu nanoparticles on MWNTs. Cyclic voltammetry and chronopotentiometry were applied to investigate the performance of the PtRu/MWNTs nanocomposite electrode for nonenzymatic oxidation of glucose. The PtRu/MWNTs electrode shows high electrocatalytic activity towards the oxidation of glucose in 0.1 M NaOH solution and thus can be used to selectively detect glucose. Under the optimal potential (+0.55 V vs. Ag/AgCl), the biosensor effectively performs a selective electrochemical analysis of glucose in the presence of common interferents, such as ascorbic acid (AA), dopamine (DP) and uric acid (UA). Wide linear calibration ranging from 1 mM to 15 mM, high sensitivity of 28.26 μA cm?2 mM?1, low detection limit of 2.5×10?5 M, and fast response time of 10 s were achieved for the detection of glucose at the PtRu/MWNTs electrode.  相似文献   

9.
In this study, the electrocatalytic characteristics of nitrogen‐doped carbon (NDC) prepared from Clerodendrum Infortunatum L leaves on a glassy carbon electrode (GCE) surface was evaluated with regards to its ability to detect the electroactive drug ketoconazole (KCZ). The NDC was prepared by carrying out a simple pyrolysis of dry powder of the leaves at 850 °C. The prepared NDC was characterized using field‐emission scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy and Brunauer‐Emmett‐Teller analysis, and was then used as an electrode material. The performance of the electrochemical KCZ sensor with the NDC‐modified glassy carbon electrode (NDC/GCE) was found to be optimal when using PBS buffer at pH 3 and a concentration of 0.1 mg/ml of NDC in the conjugate with Nafion polymer. Under these conditions, the NDC/GCE displayed a KCZ detection limit of 3 μM and a linear dependence of its response on KCZ concentration over a wide range of KCZ concentrations from 47 μM to 752 μM (R2=0.9742). These results confirmed the potential of NDC as an electrocatalyst.  相似文献   

10.
In this paper, a high‐sensitivity electrochemical sensor based on platinum (Pt) doped nickel oxide (NiO) nanoparticles and multi‐walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (Pt?NiO/MWCNTs/GCE) has been developed to determine piroxicam (PIR) and amlodipine (AML) simultaneously. The electrochemical behavior of PIR and AML at the proposed sensor has been investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CA) methods. Pt doped NiO nanoparticles were synthesized by the sol‐gel procedure and were investigated using X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDX) and field emission scanning electron microscopy (FESEM) techniques. DPV responses of PIR and AML increased linearly with their concentration in wide linear dynamic ranges of 0.6–320.0 μM and 1.0–250.0 μM, respectively. The limits of detection were 0.061 μM for PIR and 0.092 μM for AML. The excellent analytical figure of merits of the proposed modified electrode leads to application of it promising electrochemical sensor to determine PIR and AML in human serum and urine with satisfactory results.  相似文献   

11.
This work reports on the preparation of electrochemically reduced graphene oxide (ERGO)-poly(eriochrome black T) (pEBT) assembled gold nanoparticles for the simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) in PBS pH 6.0. Characterisations of the composite were carried out by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. As a result of the synergistic effect, the modified glassy carbon electrode (GCE) possessed an efficient electrochemical catalytic activity with a high selectivity and sensitivity in oxidising AA-DA and DA-UA as compared to the bare GCE. The peak separations of AA and DA, DA and UA were 183 mV and 150 mV, respectively. The linear response ranges for AA, DA and UA were 10–900 μM, 0.5–20 μM and 2–70 μM with detection limits of 0.53 μM, 0.009 μM and 0.046 μM (S/N = 3), respectively. The sensitivity of ERGO-pEBT/AuNPs was measured as 0.003 µA/μM, 0.164 µA/μM and 0.034 µA/μM for AA, DA, and UA, respectively. The modified electrochemical sensor was used in the determination of AA, DA, and UA in vitamin C tablets and urine sample with good recovery.  相似文献   

12.
In this paper, the electrochemical behavior of glassy carbon electrodes modified with Cd/Pb (GC/Cd/Pb) branched nanorodes (NRs) was studied using cyclic voltammetry technique. The obtained results showed that the branched nanorods of Cd/Pb can be readily prepared without any templates. The modified electrode was characterized using scanning electron microscopy (SEM), energy dispersive X‐ray analysis (EDAX) and electrochemical impedance spectroscopy (EIS) techniques. The electrocatalytic behavior of GC/Cd/Pb electrode showed an increase in oxidation signal of arabinose by increasing its concentration. The catalytic current was linearly related to arabinose concentration in the range of 0.6 to 6.8 μM with a limit of detection 0.2 μM.  相似文献   

13.
A non-enzymatic sensor was developed for the determination of glucose in alkaline medium by anodisation of copper in sodium potassium tartrate solution. The morphology of the modified copper electrode was studied by scanning electron microscopy, and its electrochemical behavior by cyclic voltammetry and electrochemical impedance spectroscopy. The electrode enables direct electrocatalytic oxidation of glucose on a CuO/Cu electrode at 0.7 V in 0.1 M sodium hydroxide. At this potential, the sensor is highly selective to glucose even in the presence of ascorbic acid, uric acid, or dopamine which are common interfering species. The sensor displays a sensitivity of 761.9 μA mM?1 cm?2, a linear detection range from 2 μM to 20 mM, a response time of <1 s, and a detection limit of 1 μM (S/N = 3). It was tested for determination of glucose level in blood serum.  相似文献   

14.
Choline chloride–based ionic liquid Ethaline were employed as the supporting electrolyte, graphene (GE) nanosheet was prepared with ultrasonic wave assisted electrodeposition for the first time. Scanning electron microscope results indicated that flower‐like GE nanosheets were obtained at the electrode surface. Energy dispersive X–ray spectroscopy, Fourier transform infrared spectra and Raman spectra were used to characterize the composition of the flower‐like GE nanosheets. Electrochemical methods showed that the flower‐like GE nanosheets based sensor exhibited high electrocatalytic activity for ascorbic acid (AA) oxidation and can be potentially used for the sensitive amperometric sensing of AA. Amperometric experiments showed that the sensor displayed broad linearity from 0.25 μM to 2.0 mM with a relative low detection limit of 0.1 μM (S/N = 3).  相似文献   

15.
Polyaniline (PANI)‐based sensor material for determination of ascorbic acid was synthesized by oxidative chemical polymerization of aniline on a screen‐printed carbon‐paste electrode. The influence of PANI chemical structure formed under various polymerization conditions on the sensor response was investigated. The presence of aniline dimer derivatives in PANI structure was found to induce significant improvement of the limit of detection and the linear dynamic range without a change in sensitivity. The sensor prepared by aniline polymerization in pH 7 buffer leading to the product containing mainly the aniline dimer‐based units showed the best detection limit of 0.1 µM. It was shown that the PANI‐based sensor could be used for ascorbic acid analysis in the presence of citrate and lactate as interfering ions. A quantitative determination of ascorbic acid concentration in beverages and vitamins was performed.  相似文献   

16.
Tang N  Zheng J  Sheng Q  Zhang H  Liu R 《The Analyst》2011,136(4):781-786
A novel H(2)O(2) sensor based on enzymatically induced deposition of electroactive polyaniline (PANI) at a horseradish peroxide (HRP)/aligned single-wall carbon nanotubes (SWCNTs) modified Au electrode is fabricated, and its electrochemical behaviors are investigated. Electrochemical impedance spectroscopy of the sensor confirmed the formation of PANI on SWCNTs through the HRP catalytic reaction. Cyclic voltammograms of PANI/HRP/SWCNTs modified Au electrodes showed a pair of well-defined redox peaks of PANI with reduction peak potentials of 0.211 and oxidation peak potentials of 0.293 V in 0.1 M HOAc-NaOAc (pH 4.3) solution. The oxidation peak current response of PANI is linearly related to H(2)O(2) concentration from 2.5 μM to 50.0 μM with a correlation coefficient of 0.9923 and a sensitivity of 200 μA mM(-1). The detection limit is determined to be 0.9 μM with a signal-to-noise ratio of 3. Thus, the synergistic performance of the enzyme, the highly efficient polymerization of PANI, and the templated deposition of SWCNTs provided an extensive platform for the design of novel electrochemical biosensors.  相似文献   

17.
《Electroanalysis》2005,17(24):2231-2238
Square‐wave voltammetric detection of dopamine was studied at a copper (Cu)‐(3‐mercaptopropyl) trimethoxy silane (MPS)‐complex modified electrode (Cu‐MPS). The modification of the electrode was based on the attachment of MPS onto an electrochemically activated glassy carbon electrode (GCE) by the interaction between methoxy silane groups of MPS and surface hydroxyl groups and followed by the complexation of copper with the thiol groups of MPS. The surface of the modified electrode was further coated by a thin layer of Nafion film. The surface of the Nafion coated MPS‐Cu complex modified electrode (Nafion/Cu‐MPS) was characterized using cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM), scanning electron microscope (SEM), X‐ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT‐IR) spectrometry. The modified electrode exhibited an excellent electrocatalytic activity towards the oxidation of dopamine, which was oxidized at a reduced potential of +0.35 V (vs. Ag/AgCl) at a wider pH range. Various experimental parameters, such as the amount of copper, the pH, and the temperature were optimized. A linear calibration plot was obtained in the concentration range between 8.0×10?8 M and 5.0×10?6 M and the detection limit was determined to be 5.0×10?8 M. The other common biological compounds including ascorbic acid did not interfere and the modified electrode showed an excellent specificity to the detection of dopamine. The Nafion/Cu‐MPS modified electrode can be used for about 2 months without any significant loss in sensitivity.  相似文献   

18.
《Electroanalysis》2018,30(3):474-478
A non‐enzymatic electrochemical glucose sensor based on a Cu‐based metal‐organic framework (Cu‐MOF) modified electrode was developed. The Cu‐MOF was prepared by a simple ionothermal synthesis, and the characterizations of the Cu‐MOF were studied by Fourier transform infrared spectroscopy (FT‐IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), single‐crystal X‐ray powder diffraction (SCXRD), and X‐ray powder diffraction (XRD). Electrochemical behaviors of the Cu‐MOF modified electrode to glucose were measured by differential pulse voltammetry (DPV). The electrochemical results showed that the Cu‐MOF modified electrode exhibited an excellent electro‐catalytic oxidation towards glucose in the range of 0.06 μM to 5 mM with a sensitivity of 89 μA/mM cm2 and a detection limit of 10.5 nM. Moreover, the fabricated sensor showed a high selectivity to the oxidation of glucose in coexistence with other interferences. The sensor was satisfactorily applied to the determination of glucose in urine samples. With the significant electrochemical performances, MOFs may provide a suitable platform in the construction of kinds of electrochemical sensors and/or biosensors and hold a great promise for sensing applications.  相似文献   

19.
《Electroanalysis》2017,29(7):1755-1761
As a promising electrode material, Ni‐based nanomaterials exhibit a remarkable electrochemical catalytic activity for nonenzymatic glucose sensors. In this paper, Nickel–Iron layered double hydroxide (NiFe‐LDH) film electrode with ultrathin nanosheets and porous nanostructures was synthesized directly on Ni foam (NF) by a one‐step hydrothermal method. The as‐obtained NiFe‐LDH electrode was adopted for glucose detection without further treatment. As an integrated binder‐free electrode for glucose sensor, the NiFe‐LDH/NF hybrid exhibits a superior sensitivity of 3680.2 μA mM−1 cm−2 with a low limit of detection (0.59 μM, S/N=3) as well as fast response time (<1 s). An excellent selectivity from potential interference species such as ascorbic acid, uric acid and Cl ions and acceptable stability were also achieved. The outstanding performance can be ascribed to the abundant electrochemistry active sites, facilitative diffusion of the electrolyte, high electron transfer rate and reliable stability architecture. Therefore, the NiFe‐LDH nanosheets demonstrate potential application in non‐enzymatic sensory of glucose.  相似文献   

20.
A fullerene‐C60‐modified gold electrode is employed for the determination of dopamine in the excess of ascorbic acid using square‐wave voltammetry. Based on its strong catalytic function towards the oxidation of dopamine and ascorbic acid, the overlapping voltammetric response of both the biomolecules at the bare electrode is resolved into two well‐defined voltammetric peaks with lowered oxidation potential and enhanced oxidation currents. Linear calibration curves for dopamine are obtained using square‐wave voltammetry over the concentration range 1 nM–5.0 μM in 0.1 M phosphate buffer solution at pH 7.2 with a correlation coefficient of 0.9931 and the detection limit (3σ) is estimated to be 0.26×10?9 M. The interference studies showed that the presence of physiologically common interferents (i.e. uric acid, citric acid, tartaric acid, glucose and sodium chloride) negligibly affects the response of dopamine. The practical analytical utility of the method is illustrated by quantitative determination of dopamine in commercially available pharmaceutical formulation and human body fluids, viz. urine and blood plasma, without any preliminary treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号