首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dinuclear compounds of early transition metals with a high metal–metal bond order are of fundamental interest due to their intriguing bonding situation and of practical interest because of their potential involvement in catalytic processes. In this work, two isomers of V2H2 have been generated in solid Ne by the reaction between V2 and H2 and detected by infrared spectroscopy: the linear HVVH molecule (3Σg ground state), which is the product of the spin-allowed reaction between V2 (3Σg ground state) and H2, and a lower-energy, folded V2(μ-H)2 isomer (1A1 ground state) with two bridging hydrogen atoms. Both isomers are characterized by metal–metal bonding with a high bond order; the orbital occupations point to quadruple bonding. Irradiation with ultraviolet light induces the transformation of linear HVVH to folded V2(μ-H)2, whereas irradiation with visible light initiates the reverse reaction.  相似文献   

2.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐Ph2PCH2PPh2){μ‐η2‐PCy2C(S)}(μ3‐S)] and [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] [Ru3(CO)6(μ‐H)2(μ‐PCy2)2(μ‐dppm)] ( 1 ) (dppm = Ph2PCH2PPh2) reacts under mild conditions with CS2 and yields by oxidative decarbonylation and insertion of CS into one phosphido bridge the opened 50 VE‐cluster [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐dppm){μ‐η2‐PCy2C(S)}(μ3‐S)] ( 2 ) with only two M–M bonds. The compound 2 crystallizes in the triclinic space group P 1 with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; α = 84.65(3), β = 77.21(3), γ = 81.87(3)° and V = 2790.7(11) Å3. The reaction of [Ru3(CO)7(μ‐H)(μ‐PtBu2)(μ‐PCy2)2] ( 3 ) with CS2 in refluxing toluene affords the 50 VE‐cluster [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] ( 4 ). The compound cristallizes in the monoclinic space group P 21/a with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; β = 104.223(16)° and V = 4570.9(10) Å3. Although in the solid state structure one elongated Ru–Ru bond has been found the complex 4 can be considered by means of the 31P‐NMR data as an electron‐rich metal cluster.  相似文献   

3.
[Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)]: Synthesis, X‐ray Crystal Structure and Isomerization Na[Fe2(μ‐CO)(CO)6(μ‐PtBu2)] ( 1 ) reacts with [NO][BF4] at —60 °C in THF to the nitrosyl complex [Fe2(CO)6(NO)(μ‐PtBu2)] ( 2 ). The subsequent reaction of 2 with phosphanes (L) under mild conditions affords the complexes [Fe2(CO)5(NO)L(μ‐PtBu2)], L = PPh3, ( 3a ); η‐dppm (dppm = Ph2PCH2PPh2), ( 3b ). In this case the phosphane substitutes one carbonyl ligand at the iron tetracarbonyl fragment in 2 , which was confirmed by the X‐ray crystal structure analysis of 3a . In solution 3b loses one CO ligand very easily to give dppm as bridging ligand on the Fe‐Fe bond. The thus formed compound [Fe2(CO)4(NO)(μ‐PtBu2)(μ‐dppm)] ( 4 ) occurs in solution in different solvents and over a wide temperature range as a mixture of the two isomers [Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐dppm)] ( 4a ) and [Fe2(CO)4(μ‐NO)(μ‐PtBu2)(μ‐dppm)] ( 4b ). 4a was unambiguously characterized by single‐crystal X‐ray structure analysis while 4b was confirmed both by NMR investigations in solution as well as by means of DFT calculations. Furthermore, the spontaneous reaction of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ) with NO at —60 °C in toluene yields a complicated mixture of products containing [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 6 ) as main product beside the isomers 4a and 4b occuring in very low yields.  相似文献   

4.
Coordinatively Unsaturated Diiron Complexes: Synthesis and Crystal Structures of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] and [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] [Fe2(μ‐CO)(CO)6(μ‐H)(μ‐PtBu2)] ( 1 ) reacts spontaneously with dppm (dppm = Ph2PCH2PPh2) to give [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 2 c ). By thermolysis or photolysis, 2 c loses very easily one carbonyl ligand and yields the corresponding electronically and coordinatively unsaturated complex [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ). 3 exhibits a Fe–Fe double bond which could be confirmed by the addition of methylene to the corresponding dimetallacyclopropane [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). The reaction of 1 with dppe (Ph2PC2H4PPh2) affords [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppe)] ( 5 ). In contrast to the thermolysis of 2 c , yielding 3 , the heating of 5 in toluene leads rapidly to complete decomposition. The reaction of 1 with PPh3 yields [Fe2(CO)6(H)(μ‐PtBu2)(PPh3)] ( 6 a ), while with tBu2PH the compound [Fe2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 6 b ) is formed. The thermolysis of 6 b affords [Fe2(CO)5(μ‐PtBu2)2] and the degradation products [Fe(CO)3(tBu2PH)2] and [Fe(CO)4(tBu2PH)]. The molecular structures of 3 , 4 and 6 b were determined by X‐ray crystal structure analyses.  相似文献   

5.
Calculated CAS SCF potential curves are reported for the 3Σg? state of V2 and the 1Σg+ state of Cr2. At the CAS SCF level the 3Σg? state of V2 is calculated to be bound (Rc = 1.77 Å ωc = 593.6 cm?1, De 0.33 eV) and to involve a triple 3d bond; while the Cr2 potential curve is not bound but shows a shoulder near the experimental Re and the wave function shows multiple 3d bonding in this region.  相似文献   

6.
A combined experimental and quantum chemical study of Group 7 borane, trimetallic triply bridged borylene and boride complexes has been undertaken. Treatment of [{Cp*CoCl}2] (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) with LiBH4 ? thf at ?78 °C, followed by room‐temperature reaction with three equivalents of [Mn2(CO)10] yielded a manganese hexahydridodiborate compound [{(OC)4Mn}(η6‐B2H6){Mn(CO)3}2(μ‐H)] ( 1 ) and a triply bridged borylene complex [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2MnH(CO)3] ( 2 ). In a similar fashion, [Re2(CO)10] generated [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2ReH(CO)3] ( 3 ) and [(μ3‐BH)(Cp*Co)2(μ‐CO)2(μ‐H)Co(CO)3] ( 4 ) in modest yields. In contrast, [Ru3(CO)12] under similar reaction conditions yielded a heterometallic semi‐interstitial boride cluster [(Cp*Co)(μ‐H)3Ru3(CO)9B] ( 5 ). The solid‐state X‐ray structure of compound 1 shows a significantly shorter boron–boron bond length. The detailed spectroscopic data of 1 and the unusual structural and bonding features have been described. All the complexes have been characterized by using 1H, 11B, 13C NMR spectroscopy, mass spectrometry, and X‐ray diffraction analysis. The DFT computations were used to shed light on the bonding and electronic structures of these new compounds. The study reveals a dominant B?H?Mn, a weak B?B?Mn interaction, and an enhanced B?B bonding in 1 .  相似文献   

7.
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)73‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3.  相似文献   

8.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)n(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (n = 4; 5) and [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] The reaction of [Ru2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 2 ) with dppm yields the dinuclear species [Ru2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ) (dppm = Ph2PCH2PPh2). Under thermal or photolytic conditions 3 loses very easily one carbonyl ligand and affords the corresponding electronically and coordinatively unsaturated complex [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). 4 is also obtainable by an one‐pot synthesis from [Ru3(CO)12], an excess of tBu2PH and stoichiometric amounts of dppm via the formation of [Ru2(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)2] ( 1 ). 4 exhibits a Ru–Ru double bond which could be confirmed by addition of methylene to the dimetallacyclopropane [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ). The molecular structures of 3 , 4 and 5 were determined by X‐ray crystal structure analyses.  相似文献   

9.
An unprecedented cis‐bimetallic complex of dinaphthoporphycene (DNP), namely [Pd2(μ‐DNP)(μ‐OAc)2], is reported. The most striking feature of this complex is that two palladiums coordinate to the macrocycle on the same side and are closely held together (Pd? Pd: 2.67 Å) by two bridging acetate ligands exhibiting significant metal–metal bonding interaction (bond order 0.18 evaluated by NBO analysis). Interestingly, replacing acetate with acetylacetonate (acac) could stabilize an unusual mono‐palladium complex of DNP, where Pd coordinates unsymmetrically to two ring Ns above the macrocyclic plane, as well as coordinating with two Os of the acac ligand. Remarkably, the rigid DNP core displays enhanced complexation induced aromaticity (as per NICS and HOMA analysis), despite undergoing severe core deformation during complexation with metal ion(s) as noticed from their solid‐state structures.  相似文献   

10.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐Ray Crystal Structures of [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], [Ru2(CO)4(μ‐X)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (X = Cl, S2CH) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts in benzene with elemental sulfur to the addition product [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2). 2 is also obtained by reaction of 1 with ethylene sulfide. The reaction of 1 with carbon disulfide yields with insertion of the CS2 into the Ru2(μ‐H) bridge the dithioformato complex [Ru2(CO)4(μ‐S2CH)(μ‐PtBu2)(μ‐dppm)] ( 3 ). Furthermore, 1 reacts with [NO][BF4] to the complex salt [Ru2(CO)4(μ‐NO)(μ‐H)(μ‐PtBu2)(μ‐dppm)][BF4] ( 4 ), and reaction of 1 with CCl4 or CHCl3 affords spontaneously [Ru2(CO)4(μ‐Cl)(μ‐PtBu2)(μ‐dppm)] ( 5 ) in nearly quantitative yield. The molecular structures of 2 , 3 and 5 were confirmed by crystal structure analyses.  相似文献   

11.
Molecular and Crystal Structure of Bis[chloro(μ‐phenylimido)(η5‐pentamethylcyclopentadienyl)tantalum(IV)](Ta–Ta), [{TaCl(μ‐NPh)Cp*}2] Despite the steric hindrance of the central atom in [TaCl2(NPh)Cp*] (Ph = C6H5, Cp* = η5‐C5(CH3)5), caused by the Cp* ligand, the imido‐ligand takes a change in bond structure when this educt is reduced to the binuclear complex [{TaCl(μ‐NPh)Cp*}2] in which tantalum is stabilized in the unusual oxidation state +4.  相似文献   

12.
The room‐temperature reaction of [Cp*TaCl4] with LiBH4?THF followed by addition of S2CPPh3 results in pentahydridodiborate species [(Cp*Ta)2(μ,η22‐B2H5)(μ‐H)(κ2,μ‐S2CH2)2] ( 1 ), a classical [B2H5]? ion stabilized by the binuclear tantalum template. Theoretical studies and bonding analysis established that the unusual stability of [B2H5]? in 1 is mainly due to the stabilization of sp2‐B center by electron donation from tantalum. Reactions to replace the hydrogens attached to the diborane moiety in 1 with a 2 e {M(CO)4} fragment (M=Mo or W) resulted in simple adducts, [{(Cp*Ta)(CH2S2)}2(B2H5)(H){M(CO)3}] ( 6 : M=Mo and 7 : M=W), that retained the diborane(5) unit.  相似文献   

13.
Treatment of [M2(μ‐Cl)2(cod)2] (M=Ir and Rh) with Na[H2B(bt)2] (cod=1,5‐cyclooctadiene and bt=2‐mercaptobenzothiazolyl) at low temperature led to the formation of dimetallaheterocycles [(Mcod)2(bt)2], 1 and 2 ( 1 : M=Ir and 2 : M=Rh) and a borate complex [Rh(cod){κ2‐S,S′‐H2B(bt)2}], 3 . Compounds 1 and 2 are structurally characterized metal analogues of 1,5‐cyclooctadiene. Metal–metal bond distances of 3.6195(9) Å in 1 and 3.6749(9) Å in 2 are too long to consider as bonding. In an attempt to generate the Ru analogue of 1 and 2 , that is [(Rucod)2(bt)2], we have carried out the reaction of [Ru(Cl)2(cod)(CH3CN)2] with Na[H2B(bt)2]. Interestingly, the reaction yielded agostic complexes [Ru(cod)L{κ3‐H,S,S′‐H2B(bt)2}], 4 and 5 ( 4 : L=Cl; 5 : L=C7H4NS2). One of the key differences between 4 and 5 is the presence of different ancillary ligands at the metal center. The natural bond orbital (NBO) analysis of 1 and 2 shows that there is four lone pairs of electrons on each metal center with a significant amount of d character. Furthermore, the electronic structures and the bonding of these complexes have been established on the ground of quantum‐chemical calculations. All of the new compounds were characterized by IR, 1H, 11B, 13C NMR spectroscopy, and X‐ray crystallographic analysis.  相似文献   

14.
Diphenyl(3‐methyl‐2‐indolyl)phosphine (C9H8NPPh2, 1 ) gives stable dimeric palladium(II) complexes that contain the phosphine in P,N‐bridging coordination mode. On treating 1 with [Pd(O2CCH3)2], the new complexes [Pd(μ‐C9H7NPPh2)(NCCH3)]2 ( 2 ) or [Pd(μ‐C9H7NPPh2)(μ‐O2CCH3)]2 ( 3 ) were isolated, depending on the solvent used, acetonitrile or toluene, respectively. Further reaction of 3 with the ammonium salt of 1 led to the substitution of one carboxylate ligand to afford [Pd(μ‐C9H7NPPh2)3(μ‐O2CCH3)] ( 4 ), in which the bimetallic unit is bonded by three C9H7NPPh2? moieties and one carboxylate group. Using this methodology, [Pd2(μ‐C6H4PPh2)2(μ‐C9H7NPPh2)(μ‐O2CCX3)] (X=H ( 7 ); X=F ( 8 )) were synthesised from the ortho‐metalated compounds [Pd(C6H4PPh2)(μ‐O2CCX3)]2 (X=H ( 5 ); X=F ( 6 )). Complexes 3 , 4 , 7 , and 8 have been found to be active in the catalytic β‐boration of α,β‐unsaturated esters and ketones under mild reaction conditions. Hindrance of the carbonyl moiety has an influence on the reaction rate, but quantitative conversion was achieved in many cases. More remarkably, when aryl bromides were added to the reaction media, complex 7 induced a highly successful consecutive β‐boration/cross‐coupling reaction with dimethyl acrylamide as the substrate (99 % conversion, 89 % isolated yield).  相似文献   

15.
The bridging fluoroolefin ligands in the complexes [Ir2(CH3)(CO)2(μ‐olefin)(dppm)2][OTf] (olefin=tetrafluoroethylene, 1,1‐difluoroethylene; dppm=μ‐Ph2PCH2PPh2; OTf?=CF3SO3?) are susceptible to facile fluoride ion abstraction. Both fluoroolefin complexes react with trimethylsilyltriflate (Me3SiOTf) to give the corresponding fluorovinyl products by abstraction of a single fluoride ion. Although the trifluorovinyl ligand is bound to one metal, the monofluorovinyl group is bridging, bound to one metal through carbon and to the other metal through a dative bond from fluorine. Addition of two equivalents of Me3SiOTf to the tetrafluoroethylene‐bridged species gives the difluorovinylidene‐bridged product [Ir2(CH3)(OTf)(CO)2(μ‐OTf)(μ‐C?CF2)(dppm)2][OTf]. The 1,1‐difluoroethylene species is exceedingly reactive, reacting with water to give 2‐fluoropropene and [Ir2(CO)2(μ‐OH)(dppm)2][OTf] and with carbon monoxide to give [Ir2(CO)3(μ‐κ12‐C?CCH3)(dppm)2][OTf] together with two equivalents of HF. The trifluorovinyl product [Ir21‐C2F3)(OTf)(CO)2(μ‐H)(μ‐CH2)(dppm)2][OTf], obtained through single C? F bond activation of the tetrafluoroethylene‐bridged complex, reacts with H2 to form trifluoroethylene, allowing the facile replacement of one fluorine in C2F4 with hydrogen.  相似文献   

16.
Synthesis and Crystal Structure of a Ditelluridovanadium(IV) Complex: [(μ‐η1‐Te2)(μ‐NtBu)2V2Cp2] [(μ‐η1‐Te2)(μ‐NtBu)2V2Cp2] ( 2 ) is formed from [tBuN = VCp(PMe3)2] ( 1 ) upon reaction with elemental tellurium. 1 and 2 are characterized by spectroscopic methods (MS; 1H, 13C, 51V NMR), in addition 2 by single crystal X‐ray diffraction. The crystal structure indicates a folded cyclodivanadazen ring bridged by a bidentated ditellurido ligand, the first example of this structure type.  相似文献   

17.
The reaction of [{Ir(cod)(μ‐Cl)}2] and K2CO3 or of [{Ir(cod)(μ‐OMe)}2] alone with the non‐natural tetrapyrrole 2,2′‐bidipyrrin (H2BDP) yields, depending on the stoichiometry, the mononuclear complex [Ir(cod)(HBDP)] or the homodinuclear complex [{Ir(cod)}2(BDP)]. Both complexes react readily with carbon monoxide to yield the species [Ir(CO)2(HBDP)] and [{Ir(CO)2}2(BDP)], respectively. The results from NMR spectroscopy and X‐ray diffraction reveal different conformations for the tetrapyrrolic ligand in both complexes. The reaction of [{Ir(coe)2(μ‐Cl)}2] with H2BDP proceeds differently and yields the macrocyclic [4e?,2H+]‐oxidized product [IrCl2(9‐Meic)] (9‐Meic = monoanion of 9‐methyl‐9,10‐isocorrole), which can be addressed as an iridium analog of cobalamin.  相似文献   

18.
The title compound, {(C12H12N2)[V2F6O2(H2O)2]}n, features a novel extended‐chain moiety, [VOF2F2/2(H2O)]n, comprising trans vertex‐connected VOF4(H2O) octahedra. The octahedra themselves show the characteristic distortion due to the off‐centring of the V4+ ion, such that a short terminal V=O bond and an elongated trans V—OH2 bond are present. Hydrogen bonding from the water molecules to terminal F atoms in adjacent chains generates associated chain dimers, which are loosely linked into sheets via additional hydrogen bonding involving the organic moieties. Structural relationships with previously described vanadium oxyfluoride species are briefly discussed.  相似文献   

19.
Vanadium chemistry is of interest due its biological relevance and medical applications. In particular, the interactions of high‐valent vanadium ions with sulfur‐containing biologically important molecules, such as cysteine and glutathione, might be related to the redox conversion of vanadium in ascidians, the function of amavadin (a vanadium‐containing anion) and the antidiabetic behaviour of vanadium compounds. A mechanistic understanding of these aspects is important. In an effort to investigate high‐valent vanadium–sulfur chemistry, we have synthesized and characterized the non‐oxo divanadium(IV) complex salt tetraphenylphosphonium tri‐μ‐<!?tlsb=‐0.11pt>methanolato‐κ6O:O‐bis({tris[2‐sulfanidyl‐3‐(trimethylsilyl)phenyl]phosphane‐κ4P,S,S′,S′′}vanadium(IV)) methanol disolvate, (C24H20P)[VIV2(μ‐OCH3)3(C27H36PS3)2]·2CH3OH. Two VIV metal centres are bridged by three methanolate ligands, giving a C2‐symmetric V2(μ‐OMe)3 core structure. Each VIV centre adopts a monocapped trigonal antiprismatic geometry, with the P atom situated in the capping position and the three S atoms and three O atoms forming two triangular faces of the trigonal antiprism. The magnetic data indicate a paramagnetic nature of the salt, with an S = 1 spin state.  相似文献   

20.
The first metal‐carbon bond β‐form paddlewheel complexes containing a Pd24+ core, [Pd(η2‐dithio)]2(μ‐dppa)( μ‐SCNMe2) (dithio = S2P(OEt)2, 2 ; S2COEt, 3 ; S2CNC4H8, 4 ), were prepared by the reactions of the α‐form paddlewheel‐type Pd2+4 dipalladium complex [Pd2 (μ‐Hdppa)2(μ‐SCNMe2)2][Cl]2, 1 with various dithio‐ligands, [NH4][S2P(OEt)2], [K][S2COEt] and [NH4][S2CNC4H8], in methanol at ambient temperature (Hdppa = bis(diphenylphosphino)amine). Electronic spectra and two X‐ray structures of the Pd2+4 species have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号