首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dinuclear compounds of early transition metals with a high metal–metal bond order are of fundamental interest due to their intriguing bonding situation and of practical interest because of their potential involvement in catalytic processes. In this work, two isomers of V2H2 have been generated in solid Ne by the reaction between V2 and H2 and detected by infrared spectroscopy: the linear HVVH molecule (3Σg ground state), which is the product of the spin-allowed reaction between V2 (3Σg ground state) and H2, and a lower-energy, folded V2(μ-H)2 isomer (1A1 ground state) with two bridging hydrogen atoms. Both isomers are characterized by metal–metal bonding with a high bond order; the orbital occupations point to quadruple bonding. Irradiation with ultraviolet light induces the transformation of linear HVVH to folded V2(μ-H)2, whereas irradiation with visible light initiates the reverse reaction.  相似文献   

2.
Detailed knowledge of the electronic structure of vanadium oxide clusters provides the basis for understanding and tuning their significant catalytic properties. However, already for the simple four‐atom V2O2 molecule, there are contradictory reports in the literature regarding the electronic ground state and a possible vanadium–vanadium bond. We herein show through a combination of experimental (matrix isolation) studies and theoretical results that there is a multiple vanadium–vanadium bond in this benchmark vanadium oxide molecule.  相似文献   

3.
    
We report the synthesis and spectroscopic characterization of the boron dicarbonyl complex [B(CO)2]?. The bonding situation is analyzed and compared with the aluminum homologue [Al(CO)2]? using state‐of‐the‐art quantum chemical methods.  相似文献   

4.
5.
    
Two structural isomers containing five second-row element atoms with 24 valence electrons were generated and identified by matrix-isolation IR spectroscopy and quantum chemical calculations. The OCBNO complex, which is produced by the reaction of boron atoms with mixtures of carbon monoxide and nitric oxide in solid neon, rearranges to the more stable OBNCO isomer on UV excitation. Bonding analysis indicates that the OCBNO complex is best described by the bonding interactions between a triplet-state boron cation with an electron configuration of (2s)0(2pσ)0(2pπ)2 and the CO/NO ligands in the triplet state forming two degenerate electron-sharing π bonds and two ligand-to-boron dative σ bonds.  相似文献   

6.
7.
Vibrational circular dichroism (VCD) spectroscopy has a unique specificity to chirality and is highly sensitive to the conformational equilibria of chiral molecules. On the other hand, the matrix‐isolation (MI) technique allows substantial control over sample compositions, such as the sample(s)/matrix ratio and the ratio among different samples, and yields spectra with very narrow bandwidths. We combined VCD spectroscopy with the MI technique to record MI‐VCD and MI‐vibrational absorption spectra of 3‐butyn‐2‐ol at different MI temperatures, which allowed us to investigate the conformational distributions of its monomeric and binary species. Good mirror‐imaged MI‐VCD spectra of opposite enantiomers were achieved. The related conformational searches were performed for the monomer and the binary aggregate and their vibrational absorption and VCD spectra were simulated. The well‐resolved experimental MI‐VCD bands provide the essential mean to assign the associated vibrational absorption spectral features correctly to a particular conformation in case of closely spaced bands. By varying the matrix temperature, we show that one can follow the self‐aggregation process of 3‐butyn‐2‐ol and confidently correlate the MI‐VCD spectral features with those obtained for a 0.1 M CCl4 solution and as a neat liquid at room temperature. Comparison of the aforementioned experimental VCD spectra shows conclusively that there is a substantial contribution from the 3‐butyn‐2‐ol aggregate even at 0.1 M concentration. This spectroscopic combination will be powerful for studying self‐aggregation of chiral molecules, and chirality transfer from a chiral molecule to an interacting achiral molecule and in electron donor–acceptor chiral complexes.  相似文献   

8.
9.
10.
11.
12.
13.
IR measurements show that co-condensation of Al or Ga atoms (M) with SnH4 in a solid Ar matrix at about 12 K results mainly in the spontaneous insertion of the metal into an Sn-H bond to form the M(II) hydride HMSnH3. Simultaneously the Ga2 dimer also reacts with SnH4, possibly to form a nido-type cluster Ga2(mu-H)4Sn, with a metal-deficient cubane-like structure. All of these products are photolabile. Irradiation with visible light causes HMSnH3 to tautomerize to the novel dihydrido-bridged species H3M(mu-H)2Sn, which decomposes in turn under broad-band UV-visible light (lambda=200-800 nm); some H3Al(mu-H)2Sn is formed even on deposition. The data collected from experiments with SnH4 and SnD4 and different reagent concentrations, together with the results of quantum chemical calculations, are used to interpret the results and elucidate the structures and bonding of the new species.  相似文献   

14.
The FTIR spectra of uracil and thymine were studied at different concentrations in pure Ar matrices as well as in H2O or HCl doped Ar matrices. The spectral results suggest the presence of open dimers in associated uracil and thymine. The structure of heterodimers of uracils with H2O and HCl is discussed.  相似文献   

15.
Bonding, structure, and stability of solid A2MH2 with A = Li, Na; M = Pd, Pt were investigated with a relativistically corrected density-functional approach, which reliably describes the trends among these four compounds. In order to examine the influence of the ligands (A) and of the crystalline environment, calculations were also made for free A2MH2 molecules and MH22– ions. The free MH22– complex is held together by strong bonds between formally closed shell atomic units because of strong M-d,s hybridization. The M–H bonds are further stabilized by the alkali metal ion ligands and by the crystal surrounding. The crystal field expands the H–A distance and enhances the H–A polarity. Relativistic effects contribute to M–H bonding in the solid state. The experimentally determined bond lengths and their trends are in accordance with theory. Due to relativistic and lanthanide effects, the Pt–H bond length becomes nearly as short as the Pd–H one. The small Li ion causes a distortion of the Li2PtH2 crystal resulting in an even shorter Pt–H bond length. In the gas-phase, A2PtH2 is more stable against dissociation than A2PdH2. The stability of the solid compounds is strongly influenced by the cohesive energy of the metal M, and also by the nature of the alkali metal. The evaluated enthalpies of formation favor increasing stability of solid A2MH2 against disproportionation into M and AH from Pt to Pd and from Li to Na. This is in agreement with experimental findings. The assignment of the experimental vibrational excitations should be reconsidered.  相似文献   

16.
    
Potential energy curves for the low-lying electronic states of PdH have been calculated using the MRCI method with scalar relativistic and spin-orbit corrections, and all electronic states correlating to the 4d10 (1S), 4d9 5s1 (3D), 4d9 5s1 (1D) and 4d8 5s2 (3F) states of Pd were included. Potential energy curves for the individual Ω states have been obtained, and the experimentally observed spectra of both PdH and PdD isotopologues have been assigned appropriately based on the ab initio results. Einstein A coefficients were calculated for other possible transitions from the low-lying electronic states to the X2Σ+ ground state. Diagonal and off-diagonal matrix elements of the spin-orbit Hamiltonian were calculated for all vibrational levels of the X2Σ+, 12Δ, 12Π, 22Σ+ and 32Σ+ states, and it was found from the eigenvectors that the vibrational wavefunctions of the 12Δ3/2 and 12Π3/2 states are mixed significantly in both PdH and PdD isotopologues.  相似文献   

17.
The highly strained 1H‐bicyclo[3.1.0]‐hexa‐3,5‐dien‐2‐one 1 is metastable, and rearranges to 4‐oxacyclohexa‐2,5‐dienylidene 2 in inert gas matrices (neon, argon, krypton, xenon, and nitrogen) at temperatures as low as 3 K. The kinetics for this rearrangement show pronounced matrix effects, but in a given matrix, the reaction rate is independent of temperature between 3 and 20 K. This temperature independence means that the activation energy is zero in this temperature range, indicating that the reaction proceeds through quantum mechanical tunneling from the lowest vibrational level of the reactant. At temperatures above 20 K, the rate increases, resulting in curved Arrhenius plots that are also indicative of thermally activated tunneling. These experimental findings are supported by calculations performed at the CASSCF and CASPT2 levels by using the small‐curvature tunneling (SCT) approximation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号