首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water-in-salt electrolytes based on highly concentrated bis(trifluoromethyl)sulfonimide (TFSI) promise aqueous electrolytes with stabilities nearing 3 V. However, especially with an electrode approaching the cathodic (reductive) stability, cycling stability is insufficient. While stability critically relies on a solid electrolyte interphase (SEI), the mechanism behind the cathodic stability limit remains unclear. Now, two distinct reduction potentials are revealed for the chemical environments of free and bound water and that both contribute to SEI formation. Free water is reduced about 1 V above bound water in a hydrogen evolution reaction (HER) and is responsible for SEI formation via reactive intermediates of the HER; concurrent LiTFSI precipitation/dissolution establishes a dynamic interface. The free-water population emerges, therefore, as the handle to extend the cathodic limit of aqueous electrolytes and the battery cycling stability.  相似文献   

2.
A rechargeable Li metal anode coupled with a high‐voltage cathode is a promising approach to high‐energy‐density batteries exceeding 300 Wh kg?1. Reported here is an advanced dual‐additive electrolyte containing a unique solvation structure and it comprises a tris(pentafluorophenyl)borane additive and LiNO3 in a carbonate‐based electrolyte. This system generates a robust outer Li2O solid electrolyte interface and F‐ and B‐containing conformal cathode electrolyte interphase. The resulting stable ion transport kinetics enables excellent cycling of Li/LiNi0.8Mn0.1Co0.1O2 for 140 cycles with 80 % capacity retention under highly challenging conditions (≈295.1 Wh kg?1 at cell‐level). The electrolyte also exhibits high cycling stability for a 4.6 V LiCoO2 (160 cycles with 89.8 % capacity retention) cathode and 4.95 V LiNi0.5Mn1.5O4 cathode.  相似文献   

3.
The effect of H2O in electrolytes and in electrode lattices on the thermodynamics and kinetics of reversible multivalent‐ion intercalation chemistry based on a model platform of layered VOPO4 has been investigated. The presence of H2O at the electrolyte/electrode interface plays a key role in assisting Zn2+ diffusion from electrolyte to the surface, while H2O in the lattice structure alters the working potential. More importantly, a dynamic equilibrium between bulk electrode and electrolyte is eventually reached for H2O transport during the charge/discharge cycles, with the water activity serving as the key parameter determining the direction of water movement and the cycling stability.  相似文献   

4.
Blended‐salt electrolytes showing synergistic effects have been formulated by simply mixing several lithium salts in an electrolyte. In the burgeoning field of next‐generation lithium batteries, blended‐salt electrolytes have enabled great progress to be made. In this Review, the development of such blended‐salt electrolytes is examined in detail. The reasons for formulating blended‐salt electrolytes for lithium batteries include improvement of thermal stability (safety), inhibition of aluminum‐foil corrosion of the cathode current collector, enhancement of performance over a wide temperature range (or at a high or low temperature), formation of favorable interfacial layers on both electrodes, protection of the lithium metal anode, and attainment of high ionic conductivity. Herein, we highlight key scientific issues related to the formulation of blended‐salt electrolytes for lithium batteries.  相似文献   

5.
The preparation and characterization of the cocrystalline solid–organic sodium ion electrolyte NaClO4(DMF)3 (DMF=dimethylformamide) is described. The crystal structure of NaClO4(DMF)3 reveals parallel channels of Na+ and ClO4? ions. Pressed pellets of microcrystalline NaClO4(DMF)3 exhibit a conductivity of 3×10?4 S cm?1 at room temperature with a low activation barrier to conduction of 25 kJ mol?1. SEM revealed thin liquid interfacial contacts between crystalline grains, which promote conductivity. The material melts gradually between 55–65 °C, but does not decompose, and upon cooling, it resolidifies as solid NaClO4(DMF)3, permitting melt casting of the electrolyte into thin films and the fabrication of cells in the liquid state and ensuring penetration of the electrolyte between the electrode active particles.  相似文献   

6.
Four nitrated N‐confused free‐base tetraarylporphyrins were synthesized and characterized by electrochemistry and spectroelectrochemistry in nonaqueous media. The examined compounds are represented as NO2(Ar)4NcpH2, where NO2(Ar)4Ncp is the dianion of a tetraaryl N‐confused porphyrin with an inner carbon bound NO2 group and Ar is a p‐CH3OPh, p‐CH3Ph, Ph or p‐ClPh substituent on each meso‐position of the macrocycle. UV/Vis spectra and NMR spectroscopy data indicate that the same form of the porphyrin exists in CH2Cl2 and DMF which is unlike the case of non‐NO2 N‐confused porphyrins. The Soret band of NO2(Ar)4NcpH2 exhibits a 30–36 nm red‐shift in CH2Cl2 and DMF as compared to the spectrum of the non‐NO2 N‐confused porphyrins. The first two reductions and first oxidation of NO2(Ar)4NcpH2 are reversible in CH2Cl2 containing 0.1 M TBAP. The measured HOMO–LUMO gap averages 1.65 V in CH2Cl2 and 1.53 V in DMF, with both values being similar to those of the non‐NO2 substituted compounds. The nitro group on the inverted pyrrole is itself not reduced within the negative potential limit of CH2Cl2 or DMF, but its presence significantly affects both the UV/Vis spectra and redox potentials.  相似文献   

7.
The lithium–sulfur battery is regarded as one of the most promising candidates for lithium–metal batteries with high energy density. However, dendrite Li formation and low cycle efficiency of the Li anode as well as unstable sulfur based cathode still hinder its practical application. Herein a novel electrolyte (1 m LiODFB/EC‐DMC‐FEC) is designed not only to address the above problems of Li anode but also to match sulfur cathode perfectly, leading to extraordinary electrochemical performances. Using this electrolyte, lithium|lithium cells can cycle stably for above 2000 hours and the average Coulumbic efficiency reaches 98.8 %. Moreover, the Li–S battery delivers a reversible capacity of about 1400 mAh g?1sulfur with retention of 89 % for 1100 cycles at 1 C, and a capacity above 1100 mAh g?1sulfur at 10 C. The more advantages of this cell system are its outstanding cycle stability at 60 °C and no self‐discharge phenomena.  相似文献   

8.
Lanthanide triflates have been used to incorporate NdIII and SmIII ions into the 2.2.2‐cryptand ligand (crypt) to explore their reductive chemistry. The Ln(OTf)3 complexes (Ln=Nd, Sm; OTf=SO3CF3) react with crypt in THF to form the THF‐soluble complexes [LnIII(crypt)(OTf)2][OTf] with two triflates bound to the metal encapsulated in the crypt. Reduction of these LnIII‐in‐crypt complexes using KC8 in THF forms the neutral LnII‐in‐crypt triflate complexes [LnII(crypt)(OTf)2]. DFT calculations on [NdII(crypt)]2+], the first NdII cryptand complex, assign a 4f4 electron configuration to this ion.  相似文献   

9.
A mixed nonaqueous electrolyte that contains acetonitrile and propylene carbonate (PC) was found to be suitable for a Li? O2 battery with a metallic Li anode. Both the concentration and diffusion coefficient for the dissolved O2 are significantly higher in the mixed electrolyte than those in the pure PC electrolyte. A powder microelectrode was used to investigate the O2 solubility and diffusion coefficient. A 10 mA cm?2 discharge rate on a gas‐diffusion electrode is demonstrated by using the mixed electrolyte in a Li? O2 cell.  相似文献   

10.
Organic electrode materials are promising for green and sustainable lithium‐ion batteries. However, the high solubility of organic materials in the liquid electrolyte results in the shuttle reaction and fast capacity decay. Herein, azo compounds are firstly applied in all‐solid‐state lithium batteries (ASSLB) to suppress the dissolution challenge. Due to the high compatibility of azobenzene (AB) based compounds to Li3PS4 (LPS) solid electrolyte, the LPS solid electrolyte is used to prevent the dissolution and shuttle reaction of AB. To maintain the low interface resistance during the large volume change upon cycling, a carboxylate group is added into AB to provide 4‐(phenylazo) benzoic acid lithium salt (PBALS), which could bond with LPS solid electrolyte via the ionic bonding between oxygen in PBALS and lithium ion in LPS. The ionic bonding between the active material and solid electrolyte stabilizes the contact interface and enables the stable cycle life of PBALS in ASSLB.  相似文献   

11.
Unlocking the full potential of rechargeable magnesium batteries has been partially hindered by the reliance on chloride‐based complex systems. Despite the high anodic stability of these electrolytes, they are corrosive toward metallic battery components, which reduce their practical electrochemical window. Following on our new design concept involving boron cluster anions, monocarborane CB11H12? produced the first halogen‐free, simple‐type Mg salt that is compatible with Mg metal and displays an oxidative stability surpassing that of ether solvents. Owing to its inertness and non‐corrosive nature, the Mg(CB11H12)2/tetraglyme (MMC/G4) electrolyte system permits standardized methods of high‐voltage cathode testing that uses a typical coin cell. This achievement is a turning point in the research and development of Mg electrolytes that has deep implications on realizing practical rechargeable Mg batteries.  相似文献   

12.
13.
The behavior of proteins and polypeptides at electrified aqueous–organic interfaces is of benefit in label‐free detection strategies. In this work, rat amylin (or islet amyloid polypeptide) was studied at the interface formed between aqueous liquid and gelled organic phases. Amylin is a polypeptide that is co‐secreted with insulin from islet beta‐cells and is implicated in fibril formation. In this study, rat amylin was used, which does not undergo aggregation. The polypeptide underwent an interfacial transfer process, from water to the gelled organic phase, under applied potential stimulation. Cyclic voltammetry revealed steady‐state forward and peak‐shaped reverse voltammograms, which were consistent with diffusion‐controlled water‐to‐organic transfer and thin‐film stripping or desorptive back‐transfer. The diffusion‐controlled forward current was greater when amylin was present in an acidic aqueous phase than when it was present in an aqueous phase at physiological pH; this reflects the greater charge on the polypeptide under acidic conditions. The amylin transfer current was concentration dependent over the range 2–10 μM , at both acidic and physiological pH. At physiological pH, amylin was selectively detected in the presence of a protein mixture, which illustrated the bioanalytical possibilities for this electrochemical behavior.  相似文献   

14.
Solid‐state Li metal battery technology is attractive, owing to the high energy density, long lifespans, and better safety. A key obstacle in this technology is the unstable Li/solid‐state electrolyte (SSE) interface involving electrolyte reduction by Li. Herein we report a novel approach based on the use of a nanocomposite consisting of organic elastomeric salts (LiO‐(CH2O)n‐Li) and inorganic nanoparticle salts (LiF, ‐NSO2‐Li, Li2O), which serve as an interphase to protect Li10GeP2S12 (LGPS), a highly conductive but reducible SSE. The nanocomposite is formed in situ on Li via the electrochemical decomposition of a liquid electrolyte, thus having excellent chemical and electrochemical stability, affinity for Li and LGPS, and limited interfacial resistance. XPS depth profiling and SEM show that the nanocomposite effectively restrained the reduction of LGPS. Stable Li electrodeposition over 3000 h and a 200 cycle life for a full cell were achieved.  相似文献   

15.
Nafion, the most widely used polymer for electrolyte membranes (PEMs) in fuel cells, consists of a fluorocarbon backbone and acidic groups that, upon hydration, swell to form percolated channels through which water and ions diffuse. Although the effects of the channel structures and the acidic groups on water/ion transport have been studied before, the surface chemistry or the spatially heterogeneous diffusivity across water channels has never been shown to directly influence water/ion transport. By the use of molecular spin probes that are selectively partitioned into heterogeneous regions of the PEM and Overhauser dynamic nuclear polarization relaxometry, this study reveals that both water and proton diffusivity are significantly faster near the fluorocarbon and the acidic groups lining the water channels than within the water channels. The concept that surface chemistry at the (sub)nanometer scale dictates water and proton diffusivity invokes a new design principle for PEMs.  相似文献   

16.
17.
Simultaneously improving energy efficiency (EE) and material stability in electrochemical CO2 conversion remains an unsolved challenge. Among a series of ternary Sn‐Ti‐O electrocatalysts, 3D ordered mesoporous (3DOM) Sn0.3Ti0.7O2 achieves a trade‐off between active‐site exposure and structural stability, demonstrating up to 71.5 % half‐cell EE over 200 hours, and a 94.5 % Faradaic efficiency for CO at an overpotential as low as 430 mV. DFT and X‐ray absorption fine structure analyses reveal an electron density reconfiguration in the Sn‐Ti‐O system. A downshift of the orbital band center of Sn and a charge depletion of Ti collectively facilitate the dissociative adsorption of the desired intermediate COOH* for CO formation. It is also beneficial in maintaining a local alkaline environment to suppress H2 and formate formation, and in stabilizing oxygen atoms to prolong durability. These findings provide a new strategy in materials design for efficient CO2 conversion and beyond.  相似文献   

18.
This work shows that colloidal stability and aggregation kinetics of hydrophobic polystyrene (PS) nanospheres are extremely sensitive to the nature of the salt used to coagulate them. Three PS latices and four aggregating electrolytes, which all share the same cation (Na+) but have various anions located at different positions in the classical Hofmeister series depending on their kosmotropic or chaotropic character, are used. The present study focuses on analyzing different aggregating parameters, such as critical coagulation concentrations (CCC), cluster size distributions (CSD), initial kinetic constants K11, and fractal dimensions of the aggregates df. While aggregation induced by SO42? and Cl? behaved according to the predictions of the classical Derjaguin–Landau–Verwey–Overbeek theory, important discrepancies are found with NO3?, which become dramatic when using SCN?. These discrepancies among the anions were far more significant when they acted as counterions rather than as co‐ions. While SO42? and Cl? trigger fast diffusion‐limited aggregation, SCN? gives rise to a stationary cluster size distribution in a few aggregation times when working with cationic PS particles. Clear differences are found among all analyzed parameters (CCC, CSD, K11, and df), and the experimental findings show that particles aggregate in potential wells whose depth is controlled by the chaotropic character of the anion. This paper presents new experimental evidence that may help to understand the microscopic origin of Hofmeister effects, as the observations are consistent with appealing theoretical models developed in the last few years.  相似文献   

19.
A new super‐concentrated aqueous electrolyte is proposed by introducing a second lithium salt. The resultant ultra‐high concentration of 28 m led to more effective formation of a protective interphase on the anode along with further suppression of water activities at both anode and cathode surfaces. The improved electrochemical stability allows the use of TiO2 as the anode material, and a 2.5 V aqueous Li‐ion cell based on LiMn2O4 and carbon‐coated TiO2 delivered the unprecedented energy density of 100 Wh kg?1 for rechargeable aqueous Li‐ion cells, along with excellent cycling stability and high coulombic efficiency. It has been demonstrated that the introduction of a second salts into the “water‐in‐salt” electrolyte further pushed the energy densities of aqueous Li‐ion cells closer to those of the state‐of‐the‐art Li‐ion batteries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号