共查询到20条相似文献,搜索用时 31 毫秒
1.
Lead‐free perovskite structures have been recently attracting considerable attention because of their eco‐friendly nature and properties, such as their lead‐based structure. In this work, we reviewed the lead‐free double perovskite (LFDP) structure because of its unique electronic dimensions, chemical stability, and substitutional chemistry compared with other lead‐free structures. We highlighted the recent progress on crystal structure prediction, synthesis methods, metal dopants, and ligand passivation on LFDPs. LFDPs are useful for several applications, such as solar cells, light‐emitting diodes, degradation of photocatalytic dyes, sensors, and X‐ray detectors. This report provides a summary of recent progress as a reference for further research on lead‐free perovskite structures. 相似文献
2.
《Angewandte Chemie (International ed. in English)》2017,56(41):12471-12475
Lead‐based perovskite nanocrystals (NCs) have outstanding optical properties and cheap synthesis conferring them a tremendous potential in the field of optoelectronic devices. However, two critical problems are still unresolved and hindering their commercial applications: one is the fact of being lead‐based and the other is the poor stability. Lead‐free all‐inorganic perovskite Cs3Bi2X9 (X=Cl, Br, I) NCs are synthesized with emission wavelength ranging from 400 to 560 nm synthesized by a facile room temperature reaction. The ligand‐free Cs3Bi2Br9 NCs exhibit blue emission with photoluminescence quantum efficiency (PLQE) about 0.2 %. The PLQE can be increased to 4.5 % when extra surfactant (oleic acid) is added during the synthesis processes. This improvement stems from passivation of the fast trapping process (2–20 ps). Notably, the trap states can also be passivated under humid conditions, and the NCs exhibited high stability towards air exposure exceeding 30 days. 相似文献
3.
Ruiling Zhang Xin Mao Yang Yang Songqiu Yang Wenyuan Zhao Tuerdi Wumaier Donghui Wei Weiqiao Deng Keli Han 《Angewandte Chemie (International ed. in English)》2019,58(9):2725-2729
Lead‐free zero‐dimensional (0D) organic‐inorganic metal halide perovskites have recently attracted increasing attention for their excellent photoluminescence properties and chemical stability. Here, we report the synthesis and characterization of an air‐stable 0D mixed metal halide perovskite (C8NH12)4Bi0.57Sb0.43Br7?H2O, in which individual [BiBr6]3? and [SbBr6]3? octahedral units are completely isolated and surrounded by the large organic cation C8H12N+. Upon photoexcitation, the bulk crystals exhibit ultra‐broadband emission ranging from 400 to 850 nm, which originates from both free excitons and self‐trapped excitons. This is the first example of 0D perovskites with broadband emission spanning the entire visible spectrum. In addition, (C8NH12)4Bi0.57Sb0.43Br7?H2O exhibits excellent humidity and light stability. These findings present a new direction towards the design of environmentally‐friendly, high‐performance 0D perovskite light emitters. 相似文献
4.
Dr. Robert L. Z. Hoye Riley E. Brandt Dr. Anna Osherov Prof. Vladan Stevanović Dr. Samuel D. Stranks Dr. Mark W. B. Wilson Hyunho Kim Dr. Austin J. Akey Dr. John D. Perkins Rachel C. Kurchin Jeremy R. Poindexter Prof. Evelyn N. Wang Prof. Moungi G. Bawendi Prof. Vladimir Bulović Prof. Tonio Buonassisi 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(8):2605-2610
Methylammonium lead halide (MAPbX3) perovskites exhibit exceptional carrier transport properties. But their commercial deployment as solar absorbers is currently limited by their intrinsic instability in the presence of humidity and their lead content. Guided by our theoretical predictions, we explored the potential of methylammonium bismuth iodide (MBI) as a solar absorber through detailed materials characterization. We synthesized phase‐pure MBI by solution and vapor processing. In contrast to MAPbX3, MBI is air stable, forming a surface layer that does not increase the recombination rate. We found that MBI luminesces at room temperature, with the vapor‐processed films exhibiting superior photoluminescence (PL) decay times that are promising for photovoltaic applications. The thermodynamic, electronic, and structural features of MBI that are amenable to these properties are also present in other hybrid ternary bismuth halide compounds. Through MBI, we demonstrate a lead‐free and stable alternative to MAPbX3 that has a similar electronic structure and nanosecond lifetimes. 相似文献
5.
All‐Inorganic CsPb1−xGexI2Br Perovskite with Enhanced Phase Stability and Photovoltaic Performance 下载免费PDF全文
Fu Yang Daisuke Hirotani Dr. Gaurav Kapil Dr. Muhammad Akmal Kamarudin Dr. Chi Huey Ng Dr. Yaohong Zhang Prof. Dr. Qing Shen Prof. Dr. Shuzi Hayase 《Angewandte Chemie (International ed. in English)》2018,57(39):12745-12749
Compared with organic‐inorganic perovskites, all‐inorganic cesium‐based perovskites without volatile organic compounds have gained extensive interests because of the high thermal stability. However, they have a problem on phase transition from cubic phase (active for photo‐electric conversion) to orthorhombic phase (inactive for photo‐electric conversion) at room temperature, which has hindered further progress. Herein, novel inorganic CsPb1?xGexI2Br perovskites were prepared in humid ambient atmosphere without a glovebox. The phase stability of the all‐inorganic perovskite was effectively enhanced after germanium addition. In addition, the highest power conversion efficiency of 10.8 % with high open‐circuit voltage (VOC) of 1.27 V in a planar solar cell based on CsPb0.8Ge0.2I2Br perovskite was achieved. Furthermore, the highest VOC up to 1.34 V was obtained by CsPb0.7Ge0.3I2Br perovskite, which is a remarkable record in the field of all‐inorganic perovskite solar cells. More importantly, all the photovoltaic parameters of CsPb0.8Ge0.2I2Br perovskite solar cells showed nearly no decay after 7 h measurement in 50–60 % relative humidity without encapsulation. 相似文献
6.
7.
Achieving a Rare Breathing Behavior in a Polycatenated 2 D to 3 D Net through a Pillar‐Ligand Extension Strategy 下载免费PDF全文
Xiaoliang Zhao Fuling Liu Liangliang Zhang Prof. Di Sun Prof. Rongming Wang Zhangfeng Ju Prof. Daqiang Yuan Prof. Daofeng Sun 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(3):649-652
Through a pillar‐ligand extension strategy, a rare breathing behavior in polycatenated 2D→3D nets has been achieved. Three variants exhibit interesting sorption properties that range from non‐breathing to breathing behaviors, which is influenced by the angles between the pillars and the single honeycomb layers. The increase in pillar length does not lead to an increase in polycatenation multiplicity, which is controlled by the length of intralayer tripodal carboxylate. It also does not induce obviously expanded interlayer separations but occupies much more the free voids, and as a consequence, a smaller pore volume is obtained. This suggests that in 2D→3D polycatenated bilayer metal–organic frameworks, the porosity is not always enhanced by increasing the length of the interlayer pillars with the intralayer linker remaining unchanged. 相似文献
8.
Jinfeng Ge Lingchao Xie Ruixiang Peng Billy Fanady Jiaming Huang Wei Song Tingting Yan Wenxia Zhang Ziyi Ge 《Angewandte Chemie (International ed. in English)》2020,59(7):2808-2815
Non‐fullerene all‐small‐molecule organic solar cells (NFSM‐OSCs) have shown potential as OSCs, owing to their high purity, easy synthesis and good reproducibility. However, challenges in the modulation of phase separation morphology have limited their development. Herein, two novel small molecular donors, BTEC‐1F and BTEC‐2F, derived from the small molecule DCAO3TBDTT, are synthesized. Using Y6 as the acceptor, devices based on non‐fluorinated DCAO3TBDTT showed an open circuit voltage (Voc) of 0.804 V and a power conversion efficiency (PCE) of 10.64 %. Mono‐fluorinated BTEC‐1F showed an increased Voc of 0.870 V and a PCE of 11.33 %. The fill factor (FF) of di‐fluorinated BTEC‐2F‐based NFSM‐OSC was improved to 72.35 % resulting in a PCE of 13.34 %, which is higher than that of BTEC‐1F (61.35 %) and DCAO3TBDTT (60.95 %). To our knowledge, this is the highest PCE for NFSM‐OSCs. BTEC‐2F had a more compact molecular stacking and a lower crystallinity which enhanced phase separation and carrier transport. 相似文献
9.
Mohd A. Khan Ibraheam Al‐Shankiti Ahmed Ziani Nimer Wehbe Hicham Idriss 《Angewandte Chemie (International ed. in English)》2020,59(35):14802-14808
The major challenge in solar water splitting to H2 and O2 is in making a stable and affordable system for large‐scale applications. We have designed, fabricated, and tested a photoelectrochemical reactor characterized as follows: 1) it comprises an integrated device to reduce the balance of the system cost, 2) it utilizes concentrated sunlight to reduce the photoabsorber cost, and 3) it employs and alkaline electrolyte to reduce catalyst cost and eliminate external thermal management needs. The system consists of an III‐V‐based photovoltaic cell integrated with Ni foil as an O2 evolution catalyst that also protects the cell from corrosion. At low light concentration, without the use of optical lenses, the solar‐to‐hydrogen (STH) efficiency was 18.3 %, while at high light concentration (up to 207 suns) with the use of optical lenses, the STH efficiency was 13 %. Catalytic tests conducted for over 100 hours at 100–200 suns showed no sign of degradation nor deviation from product stoichiometry (H2/O2=2). Further tests projected a system stability of years. 相似文献
10.
Summary: The silylene–π conjugating polymer, poly(di‐n‐hexylsilylenephenylene‐ethynylenephenylene) ( 1 ) adopted a fairly flexible coil‐like conformation due to the bent structure of silylene moiety and showed a unique photoexcited energy transfer behavior. The UV‐vis absorption and steady‐state/time‐resolved photoluminescence studies revealed the occurrence of an intramolecular photoexcited energy transfer (IET) between locally excited π* to charge transfer ground states as well as an intramolecular charge transfer (ICT).
11.
《Journal of mass spectrometry : JMS》2018,53(8):655-664
The novel N‐1‐sulfonylcytosine‐cyclam conjugates 1 and 2 conjugates are ionized by electrospray ionization mass spectrometry (ESI MS) in positive and negative modes (ES+ and ES−) as singly protonated/deprotonated species or as singly or doubly charged metal complexes. Their structure and fragmentation behavior is examined by collision induced experiments. It was observed that the structure of the conjugate dictated the mode of the ionization: 1 was analyzed in ES− mode while 2 in positive mode. Complexation with metal ions did not have the influence on the ionization mode. Zn2+ and Cu2+ complexes with ligand 1 followed the similar fragmentation pattern in negative ionization mode. The transformation from 2°‐amine in 1 to 3°‐amine of cyclam ring in 2 leads to the different fragmentation patterns due to the modification of the protonation priority which changed the fragmentation channels within the conjugate itself. Cu2+ ions formed complexes practically immediately, and the priority had the cyclam portion of the ligand 2 . The structure of the formed Zn2+ complexes with ligand 2 depended on the number of 3° amines within the cyclam portion of the conjugate and the ratio of the metal:ligand used. The cleavage of the cyclam ring of metal complexes is driven by the formation of the fragment that suited the coordinating demand of the metal ions and the collision energy applied. Finally, it was shown that the structure of the cyclam conjugate dictates the fragmentation reactions and not the metal ions. 相似文献
12.
13.
14.
Facile One‐Pot Synthesis of [1, 2, 3]Triazolo[1, 5‐a]Pyridines from 2‐Acylpyridines by Copper(II)‐Catalyzed Oxidative NN Bond Formation 下载免费PDF全文
Dr. Tasuku Hirayama Dr. Satoshi Ueda Takahiro Okada Norihiko Tsurue Prof. Kensuke Okuda Prof. Hideko Nagasawa 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(14):4156-4162
An efficient and simple method for the synthesis of various [1, 2, 3]triazolo[1, 5‐a]pyridines has been established. The method involves a copper(II)‐catalyzed oxidative N?N bond formation that uses atmospheric oxygen as the terminal oxidant following hydrazonation in one pot. The use of ethyl acetate as the solvent dramatically promotes the oxidative N?N bond‐formation reaction and enables the application of oxidative cyclization in the efficient one‐pot reaction. A mechanism for the reaction was proposed on the basis of the results of a spectroscopic study. 相似文献
15.
Nan Wang Xiaoli Dong Bingliang Wang Zhaowei Guo Zhuo Wang Renhe Wang Xuan Qiu Yonggang Wang 《Angewandte Chemie (International ed. in English)》2020,59(34):14577-14583
Aqueous zinc (Zn) batteries have been considered as promising candidates for grid‐scale energy storage. However, their cycle stability is generally limited by the structure collapse of cathode materials and dendrite formation coupled with undesired hydrogen evolution on the Zn anode. Herein we propose a zinc–organic battery with a phenanthrenequinone macrocyclic trimer (PQ‐MCT) cathode, a zinc‐foil anode, and a non‐aqueous electrolyte of a N,N‐dimethylformamide (DMF) solution containing Zn2+. The non‐aqueous nature of the system and the formation of a Zn2+–DMF complex can efficiently eliminate undesired hydrogen evolution and dendrite growth on the Zn anode, respectively. Furthermore, the organic cathode can store Zn2+ ions through a reversible coordination reaction with fast kinetics. Therefore, this battery can be cycled 20 000 times with negligible capacity fading. Surprisingly, this battery can even be operated in a wide temperature range from ?70 to 150 °C. 相似文献
16.
Pentaatomic planar tetracoordinate silicon with 14 valence electrons: A large‐scale global search of
(n + m = 4; q = 0, ±1, −2; X,Y = main group elements from H to Br) 下载免费PDF全文
Designing and characterizing the compounds with exotic structures and bonding that seemingly contrast the traditional chemical rules are a never‐ending goal. Although the silicon chemistry is dominated by the tetrahedral picture, many examples with the planar tetracoordinate‐Si skeletons have been discovered, among which simple species usually contain the 17/18 valence electrons. In this work, we report hitherto the most extensive structural search for the pentaatomic ptSi with 14 valence electrons, that is, (n + m = 4; q = 0, ±1, ?2; X, Y = main group elements from H to Br). For 129 studied systems, 50 systems have the ptSi structure as the local minimum. Promisingly, nine systems, that is, , HSiY3 (Y = Al/Ga), Ca3SiAl?, Mg4Si2?, C2LiSi, Si3Y2 (Y = Li/Na/K), each have the global minimum ptSi. The former six systems represent the first prediction. Interestingly, in HSiY3 (Y = Al/Ga), the H‐atom is only bonded to the ptSi‐center via a localized 2c–2e σ bond. This sharply contradicts the known pentaatomic planar‐centered systems, in which the ligands are actively involved in the ligand–ligand bonding besides being bonded to the planar center. Therefore, we proposed here that to generalize the 14e‐ptSi, two strategies can be applied as (1) introducing the alkaline/alkaline‐earth elements and (2) breaking the peripheral bonding. In light of the very limited global ptSi examples, the presently designed six systems with 14e are expected to enrich the exotic ptSi chemistry and welcome future laboratory confirmation. © 2014 Wiley Periodicals, Inc. 相似文献
17.
Gas Sorption Studies on a Microporous Coordination Polymer Assembled from 2D Grid Layers by Strong π–π Interactions 下载免费PDF全文
Dr. Xiaoxia Lv Dr. Liangjun Li Xiaoming Sun Prof. Hongyu Zhang Jinjun Cai Chao Wang Prof. Sifu Tang Prof. Xuebo Zhao 《化学:亚洲杂志》2014,9(3):901-907
The microporous coordination polymer [Co(H2L)(bipy)0.5] ? 2 H2O ( 1 , bipy=4,4′‐bipyridine) was synthesized on the basis of the V‐shaped flexible diphosphonate ligand (2,4,6‐trimethyl‐1,3‐phenylene)bis(methylene)diphosphonic acid (H4L) and the auxiliary bipy ligand under hydrothermal conditions. The structure of this compound was characterized by single‐crystal X‐ray diffraction. By joining the diphosphonate ligands and bipy through tetrahedral [CoO3N] clusters, a 2D square grid layered network was formed. Further stacking of these layers on the basis of π–π interactions resulted in a pseudo‐3D microporous network with 1D channels running through the a axis. Gas sorption studies for CO2, H2, CH4, N2, and O2 on this coordination polymer were performed, and the results revealed interesting dynamic and hysteresis sorption behavior toward H2 at low temperature. 相似文献
18.
19.
A concise preparation of the enantiopure 1,2‐(isopropylidenedioxy)‐3,4‐epoxy‐5‐cyclohexene 2b , which is an important building block for (+)‐pinitol synthesis, evolved by combining the asymmetric cycloaddition of isopropylidenedioxy)cyclohexadiene to chiral chloronitroso with an internal substitution of an amino alcohol to create vinyl epoxide. 相似文献