首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sluggish kinetics of oxygen reduction to water remains a significant limitation in the viability of proton‐exchange‐membrane fuel cells, yet details of the four‐electron oxygen reduction reaction remain elusive. Herein, we apply in situ infrared spectroscopy to probe the surface chemistry of a commercial carbon‐supported Pt nanoparticle catalyst during oxygen reduction. The IR spectra show potential‐dependent appearance of adsorbed superoxide and hydroperoxide intermediates on Pt. This strongly supports an associative pathway for oxygen reduction. Analysis of the adsorbates alongside the catalytic current suggests that another pathway must also be in operation, consistent with a parallel dissociative pathway.  相似文献   

2.
3.
The flavoenzyme monoamine oxidase (MAO) regulates mammalian behavioral patterns by modulating neurotransmitters such as adrenaline and serotonin. The mechanistic basis which underpins this enzyme is far from agreed upon. Reported herein is that the combination of a synthetic flavin and alloxan generates a catalyst system which facilitates biomimetic amine oxidation. Mechanistic and electron paramagnetic (EPR) spectroscopic data supports the conclusion that the reaction proceeds through a radical manifold. This data provides the first example of a biorelevant synthetic model for monoamine oxidase B activity.  相似文献   

4.
Rh is a promising electrocatalyst for the nitrogen reduction reaction (NRR) given its suitable nitrogen‐adsorption energy and low overpotential. However, the NRR pathway on Rh surfaces remains unknown. In this study, we employ surface‐enhanced infrared‐absorption spectroscopy (SEIRAS) and differential electrochemical mass spectrometry (DEMS) to study the reaction mechanism of NRR on Rh. N2Hx (0≤x≤2) is detected with a N=N stretching mode at ≈2020 cm?1 by SEIRAS and a signal at m/z=29 by DEMS. A new two‐step reaction pathway on Rh surfaces is proposed that involves an electrochemical process with a two‐electron transfer to form N2H2 and its subsequent decomposition in the electrolyte producing NH3. Our results also indicate that nitrate reduction and the NRR share the same reaction intermediate N2Hx.  相似文献   

5.
We report the catalytic anthraquinone‐mediated reduction of oxygen at a boron‐doped diamond electrode. Scheme of squares modelling confirms the existence of and reveals the role of the semiquinone intermediates, which are shown to have an exceptional reactivity towards oxygen (as compared to the di‐reduced anthraquinone).  相似文献   

6.
A combined experimental and density functional theory (DFT) investigation was employed in order to examine the mechanism of electrochemical CO2 reduction and H2 formation from water reduction in neutral aqueous solutions. A water soluble cobalt porphyrin, cobalt [5,10,15,20-(tetra-N-methyl-4-pyridyl)porphyrin], (CoTMPyP), was used as catalyst. The possible attachment of different axial ligands as well as their effect on the electrocatalytic cycles were examined. A cobalt porphyrin hydride is a key intermediate which is generated after the initial reduction of the catalyst. The hydride is involved in the formation of H2 and formate and acts as an indirect proton source for the formation of CO in these H+-starving conditions. The experimental results are in agreement with the computations and give new insights into electrocatalytic mechanisms involving water soluble metalloporphyrins. We conclude that in addition to the porphyrin's structure and metal ion center, the electrolyte surroundings play a key role in dictating the products of CO2/H2O reduction.  相似文献   

7.
Enzyme activities are well established biomarkers of many pathologies. Imaging enzyme activity directly in vivo may help to gain insight into the pathogenesis of various diseases but remains extremely challenging. In this communication, we report the use of EPR imaging (EPRI) in combination with a specially designed paramagnetic enzymatic substrate to map alkaline phosphatase activity with a high selectivity, thereby demonstrating the potential of EPRI to map enzyme activity.  相似文献   

8.
9.
10.
Hydrides are widely used in reduction reactions. In protic solvents, their hydrolysis generates molecular hydrogen as a second reducing agent. The competition between these two parallel reduction pathways has been overlooked so far since both typically yield the same product. We investigated the platinum‐catalyzed reduction of 4‐nitrothiophenol to 4‐aminothiophenol in aqueous sodium borohydride solution as a prominent model reaction, by using label‐free SERS monitoring in a microfluidic reactor. Kinetic analysis revealed a strong pH dependence. Surprisingly, only at pH>13 the reduction is driven exclusively by sodium borohydride. This study demonstrates the potential of microfluidics‐based kinetic SERS monitoring of heterogeneous catalysis in colloidal suspension.  相似文献   

11.
Streptothricin‐F (STT‐F), one of the early‐discovered antibiotics, consists of three components, a β‐lysine homopolymer, an aminosugar D ‐gulosamine, and an unusual bicyclic streptolidine. The biosynthesis of streptolidine is a long‐lasting but unresolved puzzle. Herein, a combination of genetic/biochemical/structural approaches was used to unravel this problem. The STT gene cluster was first sequenced from a Streptomyces variant BCRC 12163, wherein two gene products OrfP and OrfR were characterized in vitro to be a dihydroxylase and a cyclase, respectively. Thirteen high‐resolution crystal structures for both enzymes in different reaction intermediate states were snapshotted to help elucidate their catalytic mechanisms. OrfP catalyzes an FeII‐dependent double hydroxylation reaction converting L ‐Arg into (3R,4R)‐(OH)2‐L ‐Arg via (3S)‐OH‐L ‐Arg, while OrfR catalyzes an unusual PLP‐dependent elimination/addition reaction cyclizing (3R,4R)‐(OH)2‐L ‐Arg to the six‐membered (4R)‐OH‐capreomycidine. The biosynthetic mystery finally comes to light as the latter product was incorporation into STT‐F by a feeding experiment.  相似文献   

12.
Non‐precious Fe/N co‐modified carbon electrocatalysts have attracted great attention due to their high activity and stability in oxygen reduction reaction (ORR). Compared to iron‐free N‐doped carbon electrocatalysts, Fe/N‐modified electrocatalysts show four‐electron selectivity with better activity in acid electrolytes. This is believed relevant to the unique Fe–N complexes, however, the Fe–N structure remains unknown. We used o,m,p‐phenylenediamine as nitrogen precursors to tailor the Fe–N structures in heterogeneous electrocatalysts which contain FeS and Fe3C phases. The electrocatalysts have been operated for 5000 cycles with a small 39 mV shift in half‐wave potential. By combining advanced electron microscopy and Mössbauer spectroscopy, we have identified the electrocatalytically active Fe–N6 complexes (FeN6, [FeIII(porphyrin)(pyridine)2]). We expect the understanding of the FeN6 structure will pave the way towards new advanced Fe–N based electrocatalysts.  相似文献   

13.
Herein, we report that in the formation of nitrosoalkyl derivatives during the photolysis of alkyl nitrites, the formation of the intermediate alkyl alkoxy nitroxide, due to the trapping of alkyl radicals by the starting nitrite, is the key step of the entire process. In fact, these nitroxides, detectable by EPR spectroscopy, decay to the final nitroso derivatives under thermodynamic control. In light of this, the Barton reaction mechanism has been reviewed. The nitrosoalkyl derivatives, or the hydroxamic acids when steroids are involved, have now to be considered as the ending products of the entire process and not, unless a very high concentration of NO is present in the medium, the result of a direct reaction of NO with the alkyl radical, as is commonly accepted.  相似文献   

14.
Electron paramagnetic resonance (EPR) spectroscopy has been employed to investigate the effect of solid-state molecular organization on the reaction of thiyl radicals with thiols. In an irradiated C18H37SH/thiourea clathrate, the conversion of thiyl to perthiyl radicals is substantial, due to the head-to-head arrangement of the reactants within the channels and the suppression of other possible competing reactions due to hindrance by the clathrate walls. The perthiyl radical was identified using EPR analysis of its molecular dynamics within the clathrate channels. Irradiated polyethylene film containing 30% C18H37SH afforded a negligible conversion of thiyl to perthiyl radicals because of the random distribution of reactants. These results suggest that in the absence of favorable structure-control effects, the reaction between RS* and RSH is unimportant with respect to other competing reactions. Perthiyl radicals are also the major product in the vacuum solid-state radiolysis of lysozyme. A proposal of the mechanism involved in all cases is based on the equilibrium RS* + RSH <==> RSS*(H)R, followed by the irreversible conversion of the sulfuranyl radical to the perthiyl radical. As the equilibrium is strongly shifted to the left, the intermediate sulfuranyl radicals were not detected, but the lack of other competing reactions for the thiyl radicals caused the formation of perthiyl radicals to become the major path in the clathrate and in solid lysozyme radiolysis.  相似文献   

15.
Alkene difunctionalization reactions are important in organic synthesis. We have recently shown that copper(II) complexes can promote and catalyze intramolecular alkene aminooxygenation, carboamination, and diamination reactions. In this contribution, we report a combined experimental and theoretical examination of the mechanism of the copper(II)-promoted olefin aminooxygenation reaction. Kinetics experiments revealed a mechanistic pathway involving an equilibrium reaction between a copper(II) carboxylate complex and the γ-alkenyl sulfonamide substrate and a rate-limiting intramolecular cis-addition of N-Cu across the olefin. Kinetic isotope effect studies support that the cis-aminocupration is the rate-determining step. UV/Vis spectra support a role for the base in the break-up of copper(II) carboxylate dimer to monomeric species. Electron paramagnetic resonance (EPR) spectra provide evidence for a kinetically competent N-Cu intermediate with a Cu(II) oxidation state. Due to the highly similar stereochemical and reactivity trends among the Cu(II)-promoted and catalyzed alkene difunctionalization reactions we have developed, the cis-aminocupration mechanism can reasonably be generalized across the reaction class. The methods and findings disclosed in this report should also prove valuable to the mechanism analysis and optimization of other copper(II) carboxylate promoted reactions, especially those that take place in aprotic organic solvents.  相似文献   

16.
1-Aminocyclopropane-1-carboxylic oxidase (ACCO) is a non-heme iron(II)-containing enzyme involved in the biosynthesis of the phytohormone ethylene, which regulates fruit ripening and flowering in plants. The active conformation of ACCO, and in particular that of the C-terminal part, remains unclear and open and closed conformations have been proposed. In this work, a combined experimental and computational study to understand the conformation and dynamics of the C-terminal part is reported. Site-directed spin-labeling coupled to electron paramagnetic resonance (SDSL-EPR) spectroscopy was used. Mutagenesis experiments were performed to generate active enzymes bearing two paramagnetic labels (nitroxide radicals) anchored on cysteine residues, one in the main core and one in the C-terminal part. Inter-spin distance distributions were measured by pulsed EPR spectroscopy and compared with the results of molecular dynamics simulations. The results reveal the existence of a flexibility of the C-terminal part. This flexibility generates several conformations of the C-terminal part of ACCO that correspond neither to the existing crystal structures nor to the modelled structures. This highly dynamic region of ACCO raises questions on its exact function during enzymatic activity.  相似文献   

17.
Iodothyronine deiodinases are selenoenzymes which regulate the thyroid hormone homeostasis by catalyzing the regioselective deiodination of thyroxine (T4). Synthetic deiodinase mimetics are important not only to understand the mechanism of enzyme catalysis, but also to develop therapeutic agents as abnormal thyroid hormone levels have implications in different diseases, such as hypoxia, myocardial infarction, critical illness, neuronal ischemia, tissue injury, and cancer. Described herein is that the replacement of sulfur/selenium atoms in a series of deiodinase mimetics by tellurium remarkably alters the reactivity as well as regioselectivity toward T4. The tellurium compounds reported in this paper represent the first examples of deiodinase mimetics which mediate sequential deiodination of T4 to produce all the hormone derivatives including T0 under physiologically relevant conditions.  相似文献   

18.
以双金属化合物{[Co (bpy)2]3[Fe (CN)6]2}[Fe (CN)6]1/3为前驱体,采用纳米灌注法制备了具有Fe—N、Co—N和Fe—C≡N—Co活性结构的Fe、Co、N掺杂介孔Fe-Co-N-GC催化剂。Fe-Co-N-GC具有较高的比表面积和石墨化程度,使其氧还原反应(ORR)催化性能显著提高。Fe-Co-N-GC催化剂在ORR过程中表现出优异的稳定性和抗甲醇性能。  相似文献   

19.
20.
A series of compounds with Sc3N@Ih-C80 in the neutral, monomeric, and dimeric anion states have been prepared in the crystalline form and their molecular structures and optical and magnetic properties have been studied. The neutral Sc3N@Ih-C80 ⋅ 3 C6H4Cl2 ( 1 ) and (Sc3N@Ih-C80)3(TPC)2 ⋅ 5 C6H4Cl2 ( 2 , TPC=triptycene) compounds both crystallized in a high-symmetry trigonal structure. The reduction of Sc3N@Ih-C80 to the radical anion resulted in dimerization to form diamagnetic singly bonded (Sc3N@Ih-C80)2 dimers. In contrast to {[2.2.2]cryptand(Na+)}2(Sc3N@Ih-C80)2 ⋅ 2.5 C6H4Cl2 ( 3 ) with strongly disordered components, we synthesized new dimeric phases {[2.2.2]cryptand- (K+)}2(Sc3N@Ih-C80)2 ⋅ 2 C6H4Cl2 ( 4 ) and {[2.2.2]cryptand- (Cs+)}2(Sc3N@Ih-C80)2 ⋅ 2 C6H4Cl2 ( 5 ) in which only one major dimer orientation was found. The thermal stability of the (Sc3N@Ih-C80)2 dimers was studied by EPR analysis of 3 to show their dissociation in the 400–460 K range producing monomeric Sc3N@Ih-C80.− radical anions. This species shows an EPR signal with a hyperfine splitting of 5.8 mT. The energy of the intercage C−C bond was estimated to be 234±7 kJ mol−1, the highest value among negatively charged fullerene dimers. The EPR spectra of crystalline (Bu3MeP+)3(Sc3N@Ih-C80.−)3 ⋅ C6H4Cl2 ( 6 ) are presented for the first time. The salt shows an asymmetric EPR signal, which could be fitted by three lines. Two lines were attributed to Sc3N@Ih-C80.−. Hyperfine splitting is manifested above 180 K due to the hyperfine interaction of the electron spin with the three scandium atoms (a total of 22 lines with an average splitting of 5.32 mT are observed at 220 K). Furthermore, each of the 22 lines is additionally split into six lines with an average separation of 0.82 mT. The large splitting indicates intrinsic charge and spin density transfer from the fullerene cage to the Sc3N cluster. Both the monomeric and dimeric Sc3N@Ih-C80 anions show an intrinsic shift of the IR bands attributed to the Sc3N cluster and new bands corresponding to these species appear in the NIR range of their UV/Vis/NIR spectra, which allows these anions to be distinguished from neutral species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号