首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amperometric responses of all‐solid‐state ion‐selective electrodes, recorded under potentiostatic conditions, were studied on example of potassium‐selective sensors with polypyrrole solid contact, at potential corresponding to reduction of the solid contact material and accompanying transfer of potassium ions across the membrane. Selective and stable in time linear dependences of current vs. logarithm of analyte concentration were recorded, resulting from high membrane resistance and changing membrane potential. The influence of experimental parameters as applied potential or thickness of the membrane was discussed. Advantages of the amperometric mode compared to potentiometric one relate to possibility of tailoring analytical parameters (sensitivity, magnitude of the signal) as well as over one order of magnitude decrease of the detection limit. The latter effect is achieved due to externally forced incorporation of potassium ions from the solution to the membrane, compensating their spontaneous release to the sample solution. A method of experimental setup simplification was proposed, with application of two‐electrode system, which can be used in the absence of external polarization source. The required driving force for the current flow was assured by spontaneous oxidation process occurring at the second electrode, coupled with reduction of the solid contact material of the ion‐selective electrode. In this case also stable in time calibration plots can be recorded.  相似文献   

2.
In this paper, we describe a new type of polymer membrane‐based reference electrode (RE) based on ionic liquids (ILs), in both liquid‐contact (LCRE) and solid‐contact reference electrode (SCRE) forms. The ILs used were bis(trifluoromethane sulfonyl)amid with 1‐alkyl‐3‐methyl‐imidazolium as well as phosphonium and ammonium cations. In addition to their charge stabilisation role, it was found that the ILs also functioned as effective plasticizers in the PVC matrix. The LCREs and SCREs were prepared using the same design as their corresponding indicator electrodes. LCREs were prepared by casting in glass rings while SCREs were prepared on platforms made using screen‐printing technology, with poly(3‐octylthiophene‐2,5 diyl) (POT) as the intermediate polymer. After potentiometric characterization of the response mechanism, the practical performance of the REs was studied using potentiometric titrations (Pb2+ and pH), and characterised using cyclic voltammetry and impedance spectroscopy. All results were compared via parallel experiments in which the novel RE was substituted by a conventional double junction Ag/AgCl reference electrode. The mechanism of response is most likely based on a limited degree of partitioning of IL ions into the sample thereby defining aquo‐membrane interfacial potential. Despite their simple nature and construction, the REs showed excellent signal stability, and performed well in the analytical experiments. The identical mode of fabrication to that of the equivalent indicator (or Ion‐Selective Electrode, ISE) will facilitate mass‐production of both indicator and reference electrode using the same fabrication line, the only difference being the final capping membrane composition.  相似文献   

3.
Accumulation of water in ion‐selective membranes, can lead to inconsistent potentiometric responses with solid‐contact ion‐selective electrode (SC‐ISE) formats, and hence it is essential to restrain their water uptake. We have used FTIR‐ATR spectroscopy to study how the water uptake is influenced by the intermixing of a poly(3‐octylthiophene) (POT) SC and a poly(methyl methacrylate):poly(n‐decyl methacrylate) (PMMA:PDMA) based polymeric membrane matrix, the only SC‐ISE system for which direct evidence was provided on the aqueous layer elimination. Numerical simulations of the FTIR‐ATR spectra of 1 or 5 wt% POT containing PMMA:PDMA membranes showed that the addition of 5 wt% POT to the membrane lowered the equilibrium water uptake, whereas the diffusion coefficients of water in the membrane were found to be less affected. Consequently, POT is beneficial for preventing the formation of detrimental water layers in the SC‐ISE structure.  相似文献   

4.
《Electroanalysis》2004,16(5):379-385
All‐solid‐state chloride sensors were prepared by incorporation of trihexadecyl‐methylammonium chloride (THMACl) as an ion‐exchanger salt into a conjugated polymer membrane, poly(3‐octylthiophene) (POT). The influence of additional membrane components, such as a lipophilic anion, (potassium tetrakis[3,5‐bis(trifluoromethyl)phenyl] borate), poly(vinyl chloride) (PVC) or a plasticizer, (2‐nitrophenyl octyl ether) were studied. The membrane components were dissolved in chloroform except for PVC, which was dissolved in tetrahydrofuran (THF). The membrane solution was deposited on glassy carbon (GC) by solution casting resulting in all‐solid‐state chloride sensors. The sensor characteristics were determined potentiometrically and with impedance spectroscopy. The addition of plasticizer was found to be crucial in obtaining a well functioning Cl?‐ISE based on POT and THMACl.  相似文献   

5.
《Electroanalysis》2005,17(2):182-185
Nonlinear regression was applied to three empirical equations to model the response of a solid‐state lead ion‐selective electrode (ISE). One particular equation, previously reported to describe the response of a fluoride ISE, was found to also describe the response of a solid‐state lead ISE. Nonlinear regression was applied to the early portion of the response curve for the lead ISE and used to estimate the equilibrium potential for a range of test solutions.  相似文献   

6.
基于最新研究文献和自身研究工作,系统总结了以导电聚合物构建的各种高性能固态离子选择电极.导电聚合物所特有的共轭结构以及电子导电和离子导电的双重导电功能使其可以作为离子-电子转换器,从而实现对离子的传感响应与探测.由聚苯胺、聚吡咯和聚噻吩等导电聚合物为转换中间层而构建的离子选择电极可以实现纳摩尔浓度水平的离子传感探测,有望在环境监测、药物医疗和食品安全等诸多方面发挥重要作用.  相似文献   

7.
As a continuation of recent mechanistic studies into the influence of seawater ligands on the surface chemistry of the iron chalcogenide glass membrane ion‐selective electrode (ISE), the present study has investigated the response of the iron(III) ISE in a seawater ligand mimetic system to examine its suitability as a calibration medium for the electroanalysis of raw or natural seawater. Significantly, dip method calibrations of the ISE in a mixture of salicylate, ethylene diamine tetraacetic acid (EDTA), ethylene diamine and minor amounts of dissolved iron(III) and copper(II) yielded the expected Nernstian response of 30 mV/decade according to the known ion‐exchange/electron transfer response mechanism of this ISE. Furthermore, ideal Nernstian response of the electrode is also obtained in a continuous flow analysis (CFA) mode, noting that this provides scope for using a hydrodynamic flow regime to minimize the electrode release of iron and the concomitant detection limit of the ISE. Ultimately, repetitive CFA analyses of free iron(III) in raw or natural seawater yielded a free iron(III) level commensurate with the expected inorganic and organic speciation of iron(III) in seawater.  相似文献   

8.
《Analytical letters》2012,45(14):2859-2871
ABSTRACT

A polymer coated graphite rod ion selective electrode for saccharin was constructed and evaluated for the determination of saccharin in artificial table top sweeteners. The polymer consists of a thin film of silsesquioxane 3-n-propylpyridinium chloride. The electrode response was based on the ion pair formed between saccharinate and the 3-n-propylpyridinium cation from the silsequioxane polymer. The electrode exhibits a Nernstian response for saccharin concentrations between 6.9×10-6 and 5.3×10-3 mol L-1 and a detection limit of 5.5×10-6 mol L-1. The electrode response for saccharin was fast (10-20 s) and the potential independent of pH in the range of 3 to 7. The selectivity coefficients K A, B pot for several anions usually present in commercial table top sweeteners were determined following the IUPAC recommendations. The potentiometric method with the ion selective electrode was validated by the HPLC reference method, through t8543226 determination of saccharin in commercial samples of table top sweeteners. The ion selective electrode is proved suitable for the routine quality control of table top sweeteners by potentiometry.  相似文献   

9.
A chloride ion‐selective electrode (ISE) membrane was developed by using a copolymeric ion‐exchanger resin (trimethyl ethenyl quaternary ammonium chloride polystyrene‐divinylbenzene copolymer resin, TMEQAC PSDVB), the ionophore ({μ‐[4,5‐Dimethyl‐3,6‐bis(dodecyloxy)‐1,2‐phenylene]}bis(mercury chloride), ETH9033), the plasticizer (bis(2‐ethylhexyl) sebacate, DOS), and the membrane substrate (polyvinylchloride, PVC). At 25 °C, the electrode exhibited an ideal Nernstian response of 59.2 mV/decade with the linear calibration concentration range from 1.0 × 10?4‐1.0 × 10?2 M (r2 = 0.9930). The limit of detection was 2.45 ppm (6.9 × 10?2 mM) and the measurement response time was less than 10 seconds. The working temperature range of electrode was 10‐45 °C. The working pH range for chloride ion measurement was 2.0‐11.0. Among the various anions examined in this work, only I?, SCN?, and MnO4? ions show significant interference to the electrode measurement. The chloride ISE can be used at least 72 days. The determination of chloride ion content in three kinds of environmental water sample with the electrode method was accurate (92‐95%) and precise (RSD < 4.4%) and did not show significance difference from the high‐performance liquid chromatography method.  相似文献   

10.
《Electroanalysis》2017,29(3):739-747
Most commercially available fluorous polymers are ill suited for the fabrication of ion‐selective electrode (ISE) membranes. Therefore, we synthesized semifluorinated polymers for this purpose. Ionophore‐free ion‐exchanger electrodes made with these polymers show a selectivity range (≈14 orders of magnitude) that is nearly as wide as found previously for liquid fluorous ion‐exchanger electrodes. These polymers were also used to construct ISE membranes doped with fluorophilic silver ionophores. While the resulting ISEs were somewhat less selective than their fluorous counterparts, the semifluorinated polymers offer the advantage that they can be doped both with fluorophilic ionophores and traditional lipophilic ionophores, such as the silver ionophore Cu(II)‐I (o ‐xylylenebis[N,N ‐diisobutyldithiocarbamate]). We also cross‐linked these polymers, producing very durable membranes that retained broad selectivity ranges. K+ ISEs made with the cross‐linked semifluorinated polymer and the ionophore valinomycin showed selectivities similar to those of PVC membrane ISEs but with a superior thermal stability, the majority of the electrodes still giving a theoretical (Nernstian) response after exposure to a boiling aqueous solution for 10 h.  相似文献   

11.
Dinitrotoluene (DNT) is a signature material of all nitro‐aromatic explosives including the lethal 2,4,6‐trinitrotoluene (TNT). A clay‐modified reduced graphene oxide (rGO)‐polymer nanocomposite was prepared as sensing electrode for the detection of (DNT) in the aquatic systems. rGO was in situ dispersed in the electro‐conductive N‐doped phenol/formaldehyde polymer and the clay ‘montmorillonite’ was coated on the nanocomposite. The clay, containing iron as one of its mineral components, served as the recognition element for DNT. Tested using electrochemical measurement techniques – cyclic voltammetry and differential pulse voltammetry, the prepared sensing electrode exhibited a low detection limit (0.0016 μM) on signal to noise ratio basis (S/N=3) and excellent linearity (R2=0.997) over 0.02–10 mg L?1 with high sensitivity value (428 μA mM?1 cm?2) for DNT. The electrode showed negligible interference with the gravimetric and volumetric salts commonly present in seawater, and also, with explosive derivatives. The separate tests performed in a simulated seawater confirmed the suitability of the prepared electrode for use in field applications.  相似文献   

12.
A microelectrode array microprobe with a choline sensing site and an on‐probe reference electrode was constructed by depositing permselective polymer films and choline oxidase (ChOx) on one microelectrode, and iridium oxide (IrOx) on another, both of which were coated previously with a nanostructured Pt deposit. Scanning electron microscopy (SEM) of the nanostructured Pt layer revealed a unique pillar‐like, “nanograss” structure. Polyphenylenediamine (PPD) and Nafion were coated sequentially on the working (i. e. sensing) electrode surface to serve as the permselective polymer films. The microsensor exhibited high sensitivity to choline (123±13 μA mM?1 cm?2), low detection limit (3.2±0.8 μM), and fast response time (3–5 s). The choline sensor also was tested at physiological concentrations of electroactive interfering species common to brain extracellular fluid (i. e. ascorbic acid, dopamine, DOPA, and DOPAC) and showed excellent selectivity. Selectivity likely was aided by the relatively low potential of 0.35 V vs. IrOx that was made possible by the enhanced H2O2 electrooxidation activity of the underlying nanostructured Pt‐coated working electrode. Thus, Pt “nanograss” appears to be an excellent electrode surface modification for creation of high performance electroenzymatic biosensors.  相似文献   

13.
在聚邻甲苯胺 (POT)膜修饰电极上用电化学法沉积Pt微粒 ,由SEM与XRD表征其表面形态与晶面取向 ,同时研究异丙醇在金属化POT膜电极上的氧化行为 .结果表明 ,Pt在POT膜上的沉积呈现晶面择优取向的现象 ,况且POT质子掺杂后 ,由于电化学活性增强 ,影响了沉积铂微粒的尺寸和粒径分布 .异丙醇的电氧化可发生在POT的电化学活性区 ,当电位大于 0 .70V(SCE)时 ,POT不再呈氧化还原活性 ,异丙醇的电氧化主要在铂微粒上进行 .聚合物不仅作为铂微粒的载体而且自身参加反应 ,这种微异相催化体系需用新的模型描述  相似文献   

14.
《Electroanalysis》2005,17(19):1789-1794
Electropolymerized membranes on gold electrodes doped with 2,4‐dichlorophenoxyacetic acid (2,4‐D) were prepared from a solution containing resorcinol, o‐phenylenediamine and 2,4‐D. Fourier Transform Infrared (FTIR) spectroscopy was used to evaluate the incorporation and interaction of 2,4‐D with the polymer matrix prior to and after the sensing experiments. The FTIR data indicate that 2,4‐D does not leach appreciably from the polymer matrix under experimental conditions employed for the sensing studies. The electrochemical current response for 2,4‐D is compared for the doped polymer‐coated and control polymer‐coated electrode. The response of the doped polymer‐electrode was dependent on increasing concentrations of 2,4‐D and 2,4‐dichlorophenol while unresponsive to benzoic acid.  相似文献   

15.
The design of solid‐state reference electrodes without a liquid junction is important to allow miniature and cost‐effective electrochemical sensors. To address this, a pulse control is proposed using an Ag/AgI element as reliable solid‐state reference electrode. It involves the local release of iodide by a cathodic current that is immediately followed by an electromotive force (EMF) measurement that serves as the reference potential. The recapture of iodide ions is achieved by potentiostatic control. This results in intermittent potential values that are reproducible to less than one millivolt (SD=0.27 mV, n=50). The ionic strength is shown to influence the activity coefficient of released iodide in accordance with the extended Debye–Hückel equation, resulting in a predictable change of the potential reading. The principle is applied to potentiometric potassium detection with a valinomycin‐based ion‐selective electrode (ISE), demonstrating a completely solid‐state sensor configuration.  相似文献   

16.
黄载福  唐玉蓉 《分析化学》1993,21(9):1058-1060
本文研制成一种新型开链酰胺的PVC膜钙离子选择电极。应用于临床,测定了85个血清样品中的总钙,其结果与AAS法和比色法的测定结果相一致,该电极在对血清的测量中显示出良好的重现性、稳定性和准确性。  相似文献   

17.
神经界面电极作为人体和外部器件间信息融合的媒介, 为人们进一步探究神经系统高级功能的机制提供了有效工具. 传统的神经电极多以金属和半导体材料为主, 这两类材料因具有惰性材料的特性及优越的 导电性能而成为早期神经电极的主要制备材料, 但由于其刚性过大和光滑表面导致的机械失配及与生物组织间过高的电化学阻抗限制了神经电极的进一步发展. 导电高分子作为一种有机导电材料, 同时具备柔软性 (杨氏模量约在0.01~10 GPa)和导电性(高掺杂度的导电高分子的电导率在金属范围, 100~105 S/cm)的特征, 是制备神经电极的有效材料. 近年来, 人们利用导电高分子材料对传统电极材料进行改性甚至替代, 以提高电极比表面积、 减小界面阻抗, 并提高电极检测的灵敏性; 同时减小电极与组织间的应变失配, 减少炎症反应, 并进一步在导电高分子中引入功能性生物大分子, 减少生物组织对电极的排异反应, 增加电极在体内长期植入的稳定性. 本文讨论和总结了导电高分子材料在神经电极中的应用, 分别对导电高分子作为涂层修饰神经电极、 全导电高分子材料神经电极及导电高分子复合材料神经电极等展开讨论, 分析了导电高分子在神经界面电极中的应用前景及存在的问题, 以期对神经界面电极在脑科学和生物电子医疗等前沿领域的进一步发展提供参考.  相似文献   

18.
《Electroanalysis》2017,29(10):2232-2238
Human saliva is one of the body fluids which collection method is relatively simple and non‐invasive. The article is dedicated to assess concentration (activity) of Na+, K+, Ca2+, Mg2+ and Cl in fresh, unstimulated or stimulated human saliva samples using single solid contact ion‐selective electrodes with conventional reference electrode and self‐made multisensor platform (MP) equipped with ion‐selective membranes for Na+, K+, Ca2+, Mg2+ and Cl and reference electrode made in solid state technology, based on dispersed KCl in the polymer. Both kind of electrodes, single ISE and miniaturized electrodes in multisensor platform (ISE‐MP) were made of glassy carbon. The electrode surfaces have been modified by conductive polymer (PEDOT) layer deposition; with the exception of Cl electrode, in which conducting polymer was not applied. Potentiometric measurements were used to compare the changes of the ionic composition in various samples of saliva.  相似文献   

19.
Nitrate in water samples was determined by in‐electrode coulometric titration in porous electrode made of vitreous carbon particles coated with copper. The sample was mixed with diluted sulfuric acid containing 1 mmol/L hydrochloric acid, the solution was filled into the cell and electrode and the nitrate ions were directly reduced by constant current to ammonium ions. The stoichiometry of the electrode reaction was found by coulometric and photometric measurements. The detection limit and precision were found to be 0.2 mg/L and 1.7 %, respectively. The interfering effect of high chloride contents was eliminated by precipitating chlorides with silver sulfate. The method was applied for the analysis of various water samples and beverages. The results were in good agreement with data from isotachophoretic and photometric measurements.  相似文献   

20.
《Electroanalysis》2004,16(21):1777-1784
The surface of boron‐doped diamond (BDD) electrode is modified by the polymer film for the first time. The cationic polymer film of N,N‐dimethylaniline (DMA) is electrochemically deposited on BDD electrode surface. This polymer (PDMA) film‐coated BDD electrode is used as a sensor which selectively detect dopamine (DA) in the presence of ascorbic acid (AA). This electrode also can detect both DA and its metabolite, 3,4‐dihydroxy phenyl acetic acid (DOPAC) in the presence of AA in the range of the physiological concentrations of these species. Favorable ionic interaction (i.e., electrostatic attraction) between the PDMA film and AA or DOPAC lowers their oxidation potentials and enhances the current response for AA and DOPAC compared to that at the bare electrode. The PDMA film also shows a hydrophobic interaction with DA and DOPAC. In cyclic voltammetric measurements, the PDMA film‐coated electrode can successfully separate the oxidation potentials for AA and DA coexisting in the same solution and the separation is about 200 mV. AA oxidizes at more negative potential than DA. In square‐wave voltammetry, the sensitivity of the PDMA film‐coated BDD electrode for DA in the presence of higher concentration of AA is higher than that of the PDMA film‐coated glassy carbon electrode. The hydrodynamic amperometric experiments confirm that the oxidation of AA is not affected by the oxidized product of DA and vice versa. So, unlike the bare electrode the catalytic oxidation of AA by the oxidized DA is eliminated at the PDMA film‐coated BDD electrode. The sensitivities of the modified electrode for AA, DA and DOPAC, which are present in the same solution with their physiological concentration ratios, are calculated to be 0.070, 0.363 and 0.084 μA μM?1, respectively. The modified electrode exhibits a stable and sensitive response to DA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号