首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Layered covalent organic frameworks (2D-COFs), composed of reversible imine linkages and accessible pores, offer versatility for chemical modifications towards the development of catalytic materials. Nitrogen-enriched COFs are good candidates for binding Pd species. Understanding the local structure of reacting Pd sites bonded to the COF pores is key to rationalize interactions between active sites and porous surfaces. By combining advanced synchrotron characterization methods with periodic computational DFT modeling, the precise atomic structure of catalytic Pd sites attached to local defects is resolved within an archetypical imine-linked 2D-COF. This material was synthesized using an in situ method as a gel, under which imine hydrolysis and metalation reactions are coupled. Local defects formed in situ within imine-linked 2D-COF materials are highly reactive towards Pd metalation, resulting in active materials for Suzuki–Miyaura cross-coupling reactions.  相似文献   

2.
Covalent organic frameworks (COFs) as an emerging type of crystalline porous materials, have obtained considerable attention recently. They have exhibited diverse structure and attractive performance in various catalytic reactions. It is highly expected to have a systematic and comprehensive review summing up COFs‐derived catalysts in homogeneous and heterogeneous catalysis, which is favorable to the judicious design of an efficient catalyst for targeted reaction. Herein, we focus on summarizing recent and significant developments in COFs materials, with an emphasis on both the synthetic strategies and targeted functionalization, and categorize it in accordance with the different types of catalytic reactions. Their potential catalysis applications are reviewed thoroughly. Moreover, a personal view about the future development of COFs catalysts with respect to the large‐scale production is also discussed.  相似文献   

3.
Owing to their permanent porosity, highly ordered and extended structure, good chemical stability, and tunability, covalent organic frameworks (COFs) have emerged as a new type of organic materials that can offer various applications in different fields. Benefiting from the huge database of organic reactions, the required functionality of COFs can be readily achieved by modification of the corresponding organic functional groups on either polymerizable monomers or established COF frameworks. This striking feature allows homochiral covalent organic frameworks (HCCOFs) to be reasonably designed and synthesized, as well as their use as a unique platform to fabricate asymmetric catalysts. This contribution provides an overview of new progress in HCCOF-based asymmetric catalysis, including design, synthesis, and their application in asymmetric organic synthesis. Moreover, major challenges and developing trends in this field are also discussed. It is anticipated that this review article will provide some new insights into HCCOFs for heterogeneous asymmetric catalysis and help to encourage further contributions in this young but promising field.  相似文献   

4.
Covalent organic frameworks (COFs) are an extensively studied class of porous materials, which distinguish themselves from other porous polymers in their crystallinity and high degree of modularity, enabling a wide range of applications. COFs are most commonly synthesized solvothermally, which is often a time‐consuming process and restricted to well‐soluble precursor molecules. Synthesis of polyimide‐linked COFs (PI‐COFs) is further complicated by the poor reversibility of the ring‐closing reaction under solvothermal conditions. Herein, we report the ionothermal synthesis of crystalline and porous PI‐COFs in zinc chloride and eutectic salt mixtures. This synthesis does not require soluble precursors and the reaction time is significantly reduced as compared to standard solvothermal synthesis methods. In addition to applying the synthesis to previously reported imide COFs, a new perylene‐based COF was also synthesized, which could not be obtained by the classical solvothermal route. In situ high‐temperature XRPD analysis hints to the formation of precursor–salt adducts as crystalline intermediates, which then react with each other to form the COF.  相似文献   

5.
The design and synthesis of 3D covalent organic frameworks (COFs) have been considered a challenge, and the demonstrated applications of 3D COFs have so far been limited to gas adsorption. Herein we describe the design and synthesis of two new 3D microporous base‐functionalized COFs, termed BF‐COF‐1 and BF‐COF‐2, by the use of a tetrahedral alkyl amine, 1,3,5,7‐tetraaminoadamantane (TAA), combined with 1,3,5‐triformylbenzene (TFB) or triformylphloroglucinol (TFP). As catalysts, both BF‐COFs showed remarkable conversion (96 % for BF‐COF‐1 and 98 % for BF‐COF‐2), high size selectivity, and good recyclability in base‐catalyzed Knoevenagel condensation reactions. This study suggests that porous functionalized 3D COFs could be a promising new class of shape‐selective catalysts.  相似文献   

6.
Covalent organic frameworks (COFs) are highly modular porous crystalline polymers that are of interest for applications such as charge‐storage devices, nanofiltration membranes, and optoelectronic devices. COFs are typically synthesized as microcrystalline powders, which limits their performance in these applications, and their limited solubility precludes large‐scale processing into more useful morphologies and devices. We report a general, scalable method to exfoliate two‐dimensional imine‐linked COF powders by temporarily protonating their linkages. The resulting suspensions were cast into continuous crystalline COF films up to 10 cm in diameter, with thicknesses ranging from 50 nm to 20 μm depending on the suspension composition, concentration, and casting protocol. Furthermore, we demonstrate that the film fabrication process proceeds through a partial depolymerization/repolymerization mechanism, providing mechanically robust films that can be easily separated from their substrates.  相似文献   

7.
Imine COF (covalent organic framework) based on the Schiff base reaction between p‐phenylenediamine (PDA) and benzene‐1,3,5‐tricarboxaldehyde (TCA) was prepared on the HOPG‐air (air=humid N2) interface and characterized using different probe microscopies. The role of the molar ratio of TCA and PDA has been explored, and smooth domains of imine COF up to a few μm are formed for a high TCA ratio (>2) compared to PDA. It is also observed that the microscopic roughness of imine COF is strongly influenced by the presence of water (in the reaction chamber) during the Schiff base reaction. The electronic property of imine COF obtained by tunneling spectroscopy and dispersion corrected density functional theory (DFT) calculation are comparable and show semiconducting nature with a band gap of ≈1.8 eV. Further, we show that the frontier orbitals are delocalized entirely over the framework of imine COF. The calculated cohesive energy shows that the stability of imine COF is comparable to that of graphene.  相似文献   

8.
9.
Imine‐linked covalent organic framework on amino functionalized silicon substrate was constructed via a step‐wise reaction between 1,3,5‐benzenetricarboxaldehyde and 1,4‐diaminobenzene. The obtained material was used as biosensor for bovine serum albumin (BSA) adsorption and probe DNA immobilization, which extended the application of covalent organic frameworks (COFs) to a new field.  相似文献   

10.
Many sophisticated chemical and physical properties of porous materials strongly rely on the presence of the metal ions within the structures. Whereas homogeneous distribution of metals is conveniently realized in metal–organic frameworks (MOFs), the limited stability potentially restricts their practical implementation. From that perspective, the development of metal–covalent organic frameworks (MCOFs) may address these shortcomings by incorporating active metal species atop highly stable COF backbones. This Minireview highlights examples of MCOFs that tackle important issues from their design, synthesis, characterization to cutting‐edge applications.  相似文献   

11.
Two new covalent organic frameworks (COFs) were synthesized from 4,4′,4′′,4′′′-(pyrene-1,3,6,8-tetrayl)tetraaniline and 2,5-dimethoxyterephthalaldehyde (Py-DMTA-COF) or 2′,5′-dimethoxy-[1,1′:4′,1′′-terphenyl]-4,4′′-dicarbaldehyde (Py-DMTPDA-COF) under solvothermal conditions. These two COFs were further facilely developed as efficient photocatalytic platforms for the synthesis of thiophosphinates. Py-DMTA-COF exhibited better photocatalytic activity, broad substrate applicability, and excellent recycling capacity for the preparation of thiophosphinates from P(O)H compounds and thiols compared to Py-DMTPDA-COF. This methodology was further extended to the seamless gram-scale production of target phosphorothioate derivatives. The results demonstrate that COFs can provide a robust platform for developing metal-free, base-free, highly efficient, and reusable heterogeneous photocatalysts for organic transformations.  相似文献   

12.
A rapid and scalable synthesis of six new imine‐linked highly porous and crystalline COFs is presented that feature exceptionally high chemical stability in harsh environments including conc. H2SO4 (18 m ), conc. HCl (12 m ), and NaOH (9 m ). This is because of the presence of strong interlayer C?H???N hydrogen bonding among the individual layers, which provides significant steric hindrance and a hydrophobic environment around the imine (?C=N?) bonds, thus preventing their hydrolysis in such an abrasive environment. These COFs were further converted into porous, crystalline, self‐standing, and crack‐free COF membranes (COFMs) with extremely high chemical stability for their potential applications for sulfuric acid recovery. The as‐synthesized COFMs exhibit unprecedented permeance for acetonitrile (280 Lm?2 h?1 bar?1) and acetone (260 Lm?2 h?1 bar?1).  相似文献   

13.
14.
Despite significant progress in the synthesis of covalent organic frameworks (COFs), reports on the precise construction of template‐free nano‐ and microstructures of such materials have been rare. In the quest for dye‐containing porous materials, a novel conjugated framework DPP‐TAPP‐COF with an enhanced absorption capability up to λ=800 nm has been synthesized by utilizing reversible imine condensations between 5,10,15,20‐tetrakis(4‐aminophenyl)porphyrin ( TAPP ) and a diketopyrrolopyrrole ( DPP ) dialdehyde derivative. Surprisingly, the obtained COF exhibited spontaneous aggregation into hollow microtubular assemblies with outer and inner tube diameters of around 300 and 90 nm, respectively. A detailed mechanistic investigation revealed the time‐dependent transformation of initial sheet‐like agglomerates into the tubular microstructures.  相似文献   

15.
16.
Integrating different kinds of pores into one covalent organic framework (COF) endows it with hierarchical porosity and thus generates a member of a new class of COFs, namely, heteropore COFs. Whereas the construction of COFs with homoporosity has already been well developed, the fabrication of heteropore COFs still faces great challenges. Although two strategies have recently been developed to successfully construct heteropore COFs from noncyclic building blocks, they suffer from the generation of COF isomers, which decreases the predictability and controllability of construction of this type of reticular materials. In this work, this drawback was overcome by a multiple‐linking‐site strategy that offers precision construction of heteropore COFs containing two kinds of hexagonal pores with different shapes and sizes. This strategy was developed by designing a building block in which double linking sites are introduced at each branch of a C3‐symmetric skeleton, the most widely used scaffold to construct COFs with homogeneous porosity. This design provides a general way to precisely construct heteropore COFs without formation of isomers. Furthermore, the as‐prepared heteropore COFs have hollow‐spherical morphology, which has rarely been observed for COFs, and an uncommon staggered AB stacking was observed for the layers of the 2D heteropore COFs.  相似文献   

17.
Uranium is a key resource for the development of the nuclear industry, and extracting uranium from the natural seawater is one of the most promising ways to address the shortage of uranium resources. Herein, a semiconducting covalent organic framework (named NDA‐TN‐AO) with excellent photocatalytic and photoelectric activities was synthesized. The excellent photocatalytic effect endowed NDA‐TN‐AO with a high anti‐biofouling activity by generating biotoxic reactive oxygen species and promoting photoelectrons to reduce the adsorbed UVI to insoluble UIV, thereby increasing the uranium extraction capacity. Owing to the photoinduced effect, the adsorption capacity of NDA‐TN‐AO to uranium in seawater reaches 6.07 mg g?1, which is 1.33 times of that in dark. The NDA‐TN‐AO with enhanced adsorption capacity is a promising material for extracting uranium from the natural seawater.  相似文献   

18.
A new approach has been developed to design organic polymers using topology diagrams. This strategy enables covalent integration of organic units into ordered topologies and creates a new polymer form, that is, covalent organic frameworks. This is a breakthrough in chemistry because it sets a molecular platform for synthesizing polymers with predesignable primary and high‐order structures, which has been a central aim for over a century but unattainable with traditional design principles. This new field has its own features that are distinct from conventional polymers. This Review summarizes the fundamentals as well as major progress by focusing on the chemistry used to design structures, including the principles, synthetic strategies, and control methods. We scrutinize built‐in functions that are specific to the structures by revealing various interplays and mechanisms involved in the expression of function. We propose major fundamental issues to be addressed in chemistry as well as future directions from physics, materials, and application perspectives.  相似文献   

19.
张安睿  艾玥洁 《化学进展》2020,32(10):1564-1581
近年来,共价有机框架(COFs)材料因其稳定的结构、高比表面积、大孔隙率、可修饰结构和易于功能化而受到了科学家们的广泛关注。通过控制COFs材料的孔径、形状和链接方式以及后合成修饰,功能性COFs材料在气体储存分离、传感器和药物传输等领域发挥了越来越重要的作用。尤其在环境化学领域,COFs材料的研究和应用已成为一热门课题。本文综述了COFs材料的结构控制、分类以及在环境污染物检测和去除中的应用,包括对重金属离子、放射性核素、有机污染物和气体污染物的吸附和催化等。通过改变构筑单体的大小和形状、引入特殊官能团和活性位点等方法,可以增强污染物与COFs材料的相互作用(氢键相互作用、π-π相互作用和范德华力等),使COFs材料在环境领域应用中有优异的表现。本文最后展望了COFs材料在环境领域的应用前景和今后的研究方向,希望能为该领域的研究提供参考。  相似文献   

20.
The construction of a new class of covalent TTF lattice by integrating TTF units into two‐dimensional covalent organic frameworks (2D COFs) is reported. We explored a general strategy based on the C2+C2 topological diagram and applied to the synthesis of microporous and mesoporous TTF COFs. Structural resolutions revealed that both COFs consist of layered lattices with periodic TTF columns and tetragonal open nanochannels. The TTF columns offer predesigned pathways for high‐rate hole transport, predominate the HOMO and LUMO levels of the COFs, and are redox active to form organic salts that exhibit enhanced electric conductivity by several orders of magnitude. On the other hand, the linkers between the TTF units play a vital role in determining the carrier mobility and conductivity through the perturbation of 2D sheet conformation and interlayer distance. These results open a way towards designing a new type of TTF materials with stable and predesignable lattice structures for functional exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号