首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a self‐assembly of miniaturized pipette‐tip‐based solid‐phase extraction for the simultaneous extraction of nitroaromatic compounds was developed, with electrospun polyacrylonitrile nanofibers used as sorbents. The electrospun polyacrylonitrile nanofibers were characterized by scanning electron microscopy, FTIR analysis and surface area analysis. Good linearities for the four nitroaromatic compounds (2,6‐dinitrotoluene, 2‐nitrotoluene, 3‐nitrotoluene, and 4‐nitrotoluene) were obtained in a range of 250–1000 μg/L with coefficients of determination > 0.99. The limits of detection of these analytes were between 21 and 38 μg/L. The results showed that the pipette‐tip‐based solid‐phase extraction was effective in extracting nitrotoluenes in the pH regime of environmental interest (≈ 6). The investigation also revealed that the optimum mass of electrospun polyacrylonitrile nanofibers sorbent was 15 mg and 20 aspirating/dispensing cycles gave the maximum recovery of nitrotoluenes with 200 μL acetonitrile as the best eluting solvent. Moreover, the performance of the present method was studied for the extraction and determination of nitroaromatic compounds in real environmental water samples and good recoveries ranging from 70 to 115% were found, and respective relative standard deviations of <12% were obtained.  相似文献   

2.
Graphene‐based pipette tip solid‐phase extraction was combined with ultra‐high performance liquid chromatography and tandem mass spectrometry for the determination of carbamate pesticide residues in fruit juice samples. Four milligrams of graphene was used as sorbent material to pack a 1000 μL pipette tip for the extraction of pirimicarb, propoxur, isoprocarb, fenobucarb, and diethofencarb from 3 mL of fruit juice sample. The whole extraction process was finished in 12 min, and the volume of eluent used was only 1.5 mL. Under the optimized conditions, good linear relationship (R > 0.999) and lower limits of detection (0.0022–0.033 ng/mL) were achieved. The recoveries at three spiked levels ranged from 80.90 to 124.60% with relative standard deviations less than 4.88%. Compared with commercially available sorbents including propylsulfonic acid silica, graphitized carbon black, and C18, graphene was superior in extraction efficiency. The proposed method is simple, rapid, sensitive, selective, and solvent saving.  相似文献   

3.
Porous electrospun nanofibers, as new materials for solid‐phase extraction, were synthesized by electrospinning and coupled with ultra high performance liquid chromatography and mass spectrometry to determine sulfonamide residues in environmental water. Aligned porous polystyrene electrospun nanofibers were fabricated under the mechanism of phase separation. The high‐specific surface of these nanofibers (70 m2/g) could improve recoveries of the target sulfonamides 4–10 times compared with that of polystyrene nonporous material (3.8 m2/g). Under the optimized conditions, 13 sulfonamide residues showed an excellent linear relationship in the range of 0.125–12.5 ng/mL with a linear correlation coefficient (r2) greater than 0.99, and the detection limits of sulfonamides were as low as 0.80–5.0 ng/L. Compared to the commercial C18 and HLB columns, the homemade porous nanofibers columns had some merits including simple fabrication and extraction process, short process time and environmental friendliness. The optimized method was applied to eight water samples collected from different livestock farms (Xuzhou, China). The results showed that polystyrene porous nanofibers were promising to preconcentrate sulfonamides of different polarities in the waste water.  相似文献   

4.
Sulfonated poly(styrene‐divinylbenzene) modified with five kinds of amine functional groups was applied to the determination of carbendazim in apple samples with a pipette‐tip solid‐phase extraction method. The structures of the polymers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Five different modifications of the solid‐phase extraction sorbent based on sulfonated poly(styrene‐divinylbenzene) were tested under static and pipette‐tip solid‐phase extraction conditions. The polymer modified with p‐methoxyaniline showed the best recognition capacity and adsorption amount for carbendazim. Under the optimum conditions, 3.00 mg of the adsorbent, 1.00 mL of ethyl acetate as washing solvent, and 1.00 mL of ammonia/acetonitrile (5:95, v/v) as elution solvent were used in the pretreatment procedure of apple samples. The calibration graphs of carbendazim in methanol were linear over 5.00–200.00 μg/mL, and the limits of detection and quantification were 0.01 and 0.03 μg/mL, respectively. The method recoveries of carbendazim were in the range of 91.31–98.13% with associated intraday relative standard deviations of 0.76–2.13% and interday relative standard deviations of 1.10–1.85%. Sulfonated poly(styrene‐divinylbenzene) modified with p‐methoxyaniline showed satisfactory results (recovery: 97.96%) and potential for the rapid purification of carbendazim in apple samples combined with the pipette‐tip solid‐phase extraction.  相似文献   

5.
A sensitive method for determining sulfonamides in water was developed and validated through in situ derivatization and hollow‐fiber liquid‐phase microextraction with ultra‐high performance liquid chromatography and fluorescence detection. The target sulfonamides were sulfadiazine, sulfacetamide, sulfamerazine, sulfamethazine, sulfamethoxypyridazine, sulfachloropyridazine, sulfamethoxazole, and sulfisoxazole. Following in situ derivatization with fluorescamine, three‐phase hollow‐fiber liquid‐phase microextraction with an S 6/2 polypropylene hollow‐fiber membrane was applied automatically using a multipurpose autosampler. Experimental parameters including derivatization time, choice of organic phase, pH of donor and acceptor phase, stirring rate, extraction temperature and time were optimized. Under optimized conditions, the target sulfonamides achieved excellent linearity with correlation coefficients of 0.9924–0.9994 within the concentration range of 0.05–5 μg/L. The limits of detection of the eight sulfonamides were 3.1–11.2 ng/L, and the limits of quantification were 10.3–37.3 ng/L. Enrichment factors of 0.1 and 5 μg/L sulfonamides spiked in lake water were 14–60, and recoveries were 56–113% with relative standard derivations of 3–19%. Applied with the developed method, sulfamerazine and sulfamethoxazole were measurable in both influent and effluent water of the three sewage treatment plants in Guangzhou, China. The developed method was sensitive and provided an alternative method for simultaneously enriching and quantifying multiple sulfonamides in environmental water.  相似文献   

6.
A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid‐phase extraction combined with ultrasound‐assisted dispersive liquid–liquid microextraction before ultra‐high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid‐phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid–liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0–400 (tebuconazole, diniconazole, and hexaconazole) and 4.0–800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5–1.1 and 1.8–4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained.  相似文献   

7.
A simple technique for the collection of an extraction solvent lighter than water after dispersive liquid–liquid microextraction combined with high‐performance liquid chromatography with ultraviolet detection was developed for the determination of four paraben preservatives in aqueous samples. After the extraction procedure, low‐density organic solvent together with some little aqueous phase was separated by using a disposable glass Pasteur pipette. Next, the flow of the aqueous phase was stopped by successive dipping the capillary tip of the pipette into anhydrous Na2SO4. The upper organic layer was then removed simply with a microsyringe and injected into the high‐performance liquid chromatography system. Experimental parameters that affect the extraction efficiency were investigated and optimized. Under optimal extraction conditions, the extraction recoveries ranged from 25 to 86%. Good linearity with coefficients with the square of correlation coefficients ranging from 0.9984 to 0.9998 was observed in the concentration range of 0.001–0.5 μg/mL. The relative standard deviations ranged from 4.1 to 9.3% (n = 5) for all compounds. The limits of detection ranged from 0.021 to 0.046 ng/mL. The method was successfully applied for the determination of parabens in tap water and fruit juice samples and good recoveries (61–108%) were achieved for spiked samples.  相似文献   

8.
In‐syringe solid‐phase extraction is a promising sample pretreatment method for the on‐site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in‐syringe solid‐phase extraction device using metal–organic frameworks as the adsorbent was fabricated for the on‐site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self‐made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal–organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self‐made device for on‐site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal–organic frameworks in sample preparation and demonstrate the great potential of in‐syringe solid‐phase extraction for the on‐site sampling of trace contaminants in environmental waters.  相似文献   

9.
Polypyrrole‐magnetite dispersive micro‐solid‐phase extraction method combined with ultraviolet‐visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole‐magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro‐solid‐phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole‐magnetite dispersive micro‐solid phase‐extraction conditions were sample pH 8, 60 mg polypyrrole‐magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole‐magnetite dispersive micro‐solid‐phase extraction with ultraviolet‐visible method showed good linearity in the range of 0.05–7 mg/L (R 2 > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4–111.3%) with relative standard deviations < 10%. The method was successfully applied to the analysis of dyes in textile wastewater samples where the concentration found was 1.03 mg (RSD ±7.9%) and 1.13 mg/L (RSD ± 4.6%) for Rhodamine 6G and crystal violet, respectively. It can be concluded that this method can be adopted for the rapid extraction and determination of dyes at trace concentration levels.  相似文献   

10.
A rapid dispersive micro‐solid phase extraction (D‐μ‐SPE) combined with LC/MS/MS method was developed and validated for the determination of ketoconazole and voriconazole in human urine and plasma samples. Synthesized mesoporous silica MCM‐41 was used as sorbent in d ‐μ‐SPE of the azole compounds from biological fluids. Important D‐μ‐SPE parameters, namely type desorption solvent, extraction time, sample pH, salt addition, desorption time, amount of sorbent and sample volume were optimized. Liquid chromatographic separations were carried out on a Zorbax SB‐C18 column (2.1 × 100 mm, 3.5 μm), using a mobile phase of acetonitrile–0.05% formic acid in 5 mm ammonium acetate buffer (70:30, v /v). A triple quadrupole mass spectrometer with positive ionization mode was used for the determination of target analytes. Under the optimized conditions, the calibration curves showed good linearity in the range of 0.1–10,000 μg/L with satisfactory limit of detection (≤0.06 μg/L) and limit of quantitation (≤0.3 μg/L). The proposed method also showed acceptable intra‐ and inter‐day precisions for ketoconazole and voriconazole from urine and human plasma with RSD ≤16.5% and good relative recoveries in the range 84.3–114.8%. The MCM‐41‐D‐μ‐SPE method proved to be rapid and simple and requires a small volume of organic solvent (200 μL); thus it is advantageous for routine drug analysis.  相似文献   

11.
In this study, a mixed hemimicelle solid‐phase extraction method based on Fe3O4 nanoparticles coated with sodium dodecyl sulfate was applied for the preconcentration and fast isolation of six fluoroquinolones in environmental water samples before high‐performance liquid chromatography determination. The main factors affecting the extraction efficiency of the analytes, such as amount of surfactant, amount of Fe3O4 nanoparticles, extraction time, sample volume, sample pH, ionic strength, and desorption conditions, were investigated and optimized. The method has detection limits from 0.05 to 0.1 ng/mL and good linearity (r ≥ 09948) in the range 0.1–200 ng/mL depending on the fluoroquinolone. The enrichment factor is ~200. The recoveries (at spiked levels of 1, 5, and 50 ng/mL) are in the range of 79–120%.  相似文献   

12.
A sol–gel coating technique was applied for the preparation of a solid‐phase microextraction fiber by coating the metal–organic framework UiO‐67 onto a stainless‐steel wire. The prepared fiber was explored for the headspace solid‐phase microextraction of five nitrobenzene compounds from water samples before gas chromatography with mass spectrometric detection. The effects of the extraction temperature, extraction time, sample solution volume, salt addition, and desorption conditions on the extraction efficiency were optimized. Under the optimal conditions, the linearity was observed in the range of 0.015–12.0 μg/L for the compounds in water samples, with the correlation coefficients (r) of 0.9945–0.9987. The limits of detection of the method were 5.0–10.0 ng/L, and the recoveries of the analytes from spiked water samples for the method were in the range of 74.0–102.0%. The precision for the measurements, expressed as the relative standard deviation, was less than 11.9%.  相似文献   

13.
A zirconium terephthalate metal‐organic framework‐incorporated poly(N‐vinylcarbazole‐co‐divinylbenzene) monolith was fabricated in a capillary by a thermal polymerization method. The optimized monolith had a homogeneous structure, good permeability, and stability. The monolith could be used for the effective enrichment of fungicides through π‐π interactions, electrostatic forces, and hydrogen bonds. The potential factors that affect the extraction efficiency, including ionic strength, solution pH, sample volume, and eluent volume, were investigated in detail. The monolith‐based in‐tube solid‐phase microextraction coupled with ultra‐high‐performance liquid chromatography and high‐resolution Orbitrap mass spectrometry was performed for the analysis of five fungicides (pyrimethanil, tebuconazole, hexaconazole, diniconazole, and flutriafol) in environmental samples. Under the optimized conditions, the linear ranges were 0.005–5 ng/mL for pyrimethanil, 0.01–5 ng/mL for flutriafol, and 0.05–5 ng/mL for other fungicides, respectively, with coefficients of determination ≥0.9911. The limits of detection were 1.34–14.8 ng/L. The columns showed good repeatability (relative standard deviations ≤9.3%, n = 5) and desirable column‐to‐column reproducibility (relative standard deviations 5.3–9.4%, n = 5). The proposed method was successfully applied for the simultaneous detection of five fungicides in water and soil samples, with recoveries of 90.4–97.5 and 84.0–95.3%, respectively.  相似文献   

14.
An adsorbent of carbon dot@poly(glycidyl methacrylate)@Fe3O4 nanoparticles has been developed for the microwave‐assisted magnetic solid‐phase extraction of polycyclic aromatic hydrocarbons in environmental aqueous samples prior to high‐performance liquid chromatography with UV/visible spectroscopy detection. Poly(glycidyl methacrylate) was synthesized by atom transfer radical polymerization. The chain length and amount of carbon dots attached on them can be easily controlled through changing polymerization conditions, which contributes to tunable extraction performance. The successful fabrication of the nano‐adsorbent was confirmed by transmission electronic microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and vibrating sample magnetometry. The extraction performance of the adsorbent was evaluated by using polycyclic aromatic hydrocarbons as model analytes. The key factors influencing the extraction, such as microwave power, adsorption time, desorption time and desorption solvents were investigated in detail. Under the optimal conditions, the microwave‐assisted method afforded magnetic solid‐phase extraction with short extraction time, wide dynamic linear range (0.02–200 μg/L), good linearity (R2 ≥ 98.57%) and low detection limits (20–90 ng/L) for model analytes. The adsorbent was successfully applied for analyzing polycyclic aromatic hydrocarbons in environmental aqueous samples and the recoveries were in the range of 86.0–124.2%. Thus, the proposed method is a promising candidate for fast and reliable preconcentration of trace polycyclic aromatic hydrocarbons in real water samples.  相似文献   

15.
Various cotton fiber based boronate‐affinity adsorbents are recently developed for the sample pretreatment of cis‐diol‐containing biomolecules, but most do not have efficient capacity due to limited binding sites on the surface of cotton fibers. To increase the density of boronate groups on the surface of cotton fiber, polyhedral oligomeric silsesquioxanes were used to modify cotton fiber to provide plentiful reactive sites for subsequent functionalization with 4‐formylphenylboronic acid. The new adsorbent showed special recognition ability towards cis‐diols and high adsorption capacity (175 μg/g for catechol, 250 μg/g for dopamine, 400 μg/g for adenosine). The in‐pipette‐tip solid‐phase extraction was investigated under different conditions, including pH and ionic strength of solution, adsorbent amount, pipette times, washing solvent, and elution solvent. The in‐pipette‐tip solid‐phase extraction coupled with high‐performance liquid chromatography was used to analyze four nucleosides in urine samples. Under the optimal extraction conditions, the detection limits were determined to be between 5.1 and 6.1 ng/mL (S/N  =  3), and the linearity ranged from 20 to 500 ng/mL for these analytes. The accuracy of the analytical method was examined by studying the relative recoveries of analytes in real urine samples with recoveries varying from 83 to 104% (RSD = 3.9–10.2%, n = 3).  相似文献   

16.
In this study, magnetized MOF‐74 (Ni) was prepared using an ultrasound‐assisted synthesis method. This novel functional magnetic adsorbent was characterized using various techniques. Using the prepared material as adsorbents, a magnetic solid‐phase extraction method coupled with high‐performance liquid chromatography was proposed for determining four phthalate esters in Chinese liquor samples. The extraction parameters, including solution pH, adsorbent amount, extraction time, and eluent type and volume, were optimized. Under the optimized conditions, proposed method showed good linearity within the range of 1.53–200 μg/L for diphenyl phthalate, 2.03–200 μg/L for butyl benzyl phthalate, 7.02–200 μg/L for diamyl phthalate, and 6.03–200 μg/L for dicyclohexyl phthalate, with correlation coefficients > 0.9944, low limits of detection (0.46–2.10 μg/L, S/N = 3), and good extraction repeatability (relative standard deviations of 3.7%, n = 6). This method was successfully used to analyze phthalate esters in Chinese liquor samples with recoveries of 74.4–104.8%. Two phthalate esters were detected in two samples, both at concentrations that satisfied the Chinese national standard, indicating this method has practical application prospects. The extraction efficiency of this method was also compared with conventional solid‐phase extraction using commercial C18 cartridges. The results demonstrated that the proposed magnetic solid‐phase extraction is a simple, time‐saving, efficient, and low‐cost method.  相似文献   

17.
Graphene oxide based molecularly imprinted polymers modified with β‐cyclodextrin were prepared as solid‐phase extraction column sorbents for specific recognition and sensitive detection of di(2‐ethylhexyl) phthalate in water samples. The morphology and composition of synthesized sorbents were characterized by scanning electron microscopy, thermo‐gravimetric analysis, Raman spectroscopy, and Fourier‐transform infrared spectroscopy. The conditions affecting the performance of extraction procedures such as desorption solvent types and volume, sample pH and volume were investigated. The loading capacity (8.2 μg/mg) of the prepared sorbents increased eight times after modification with β‐cyclodextrin. The developed extraction procedures coupled to high‐performance liquid chromatography exhibited good linearity (0.2–500 μg/L), low limit of detection (0.052 μg/L), and good precision (relative standard deviation?5.7%) under optimized conditions. The developed solid‐phase extraction technique with prepared sorbents has been successfully applied in extracting trace di(2‐ethylhexyl) phthalate from real natural waters with high efficiency, good selectivity, and desirable recoveries.  相似文献   

18.
A new method based on cetylpyridinium chloride coated ferroferric oxide/silica magnetic microspheres as an efficient solid‐phase adsorbent was developed for the extraction and enrichment of ochratoxin A. The determination of ochratoxin A was obtained by high‐performance liquid chromatography with fluorescence detection. In the presence of cetylpyridinium chloride, the adsorption capacity of ferroferric oxide/silica microspheres was 5.95 mg/g for ochratoxin A. The experimental parameters were optimized, including the amounts of ferroferric oxide/silica microspheres (20 mg) and cetylpyridinium chloride (0.18 mL, 0.5 mg/mL), pH value of media (9), ultrasonic time (5 min), elution solvent and volume [2(1 + 1) mL (washed twice, 1 mL each time) 1% acetic acid acetonitrile]. Under optimal experiment conditions, ochratoxin A had good linearity in the range of 2.5–250.0 ng/L in water samples with correlation coefficient of the calibration curve 0.9995. The limit of detection for ochratoxin A was 0.83 ng/L, and the recoveries were 89.8–96.8% with the relative standard deviation of 1.5–3.5% in environmental water samples. Furthermore, ferroferric oxide/silica microspheres show excellent reusability during extraction procedures for no less than six times.  相似文献   

19.
A novel magnetic solid phase extraction coupled with high‐performance liquid chromatography method was established to analyze polyaromatic hydrocarbons in environmental water samples. The extraction conditions, including the amount of extraction agent, extraction time, pH and the surface structure of the magnetic extraction agent, were optimized. The results showed that the amount of extraction agent and extraction time significantly influenced the extraction performance. The increase in the specific surface area, the enlargement of pore size, and the reduction of particle size could enhance the extraction performance of the magnetic microsphere. The optimized magnetic extraction agent possessed a high surface area of 1311 m2/g, a large pore size of 6–9 nm, and a small particle size of 6–9 μm. The limit of detection for phenanthrene and benzo[g,h,i]perylene in the developed analysis method was 3.2 and 10.5 ng/L, respectively. When applied to river water samples, the spiked recovery of phenanthrene and benzo[g,h,i]perylene ranged from 89.5–98.6% and 82.9–89.1%, respectively. Phenanthrene was detected over a concentration range of 89–117 ng/L in three water samples withdrawn from the midstream of the Huai River, and benzo[g,h,i]perylene was below the detection limit.  相似文献   

20.
We describe a highly sensitive micro‐solid‐phase extraction method for the pre‐concentration of six phthalate esters utilizing a TiO2 nanotube array coupled to high‐performance liquid chromatography with a variable‐wavelength ultraviolet visible detector. The selected phthalate esters included dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, bis(2‐ethylhexyl)phthalate and dioctyl phthalate. The factors that would affect the enrichment, such as desorption solvent, sample pH, salting‐out effect, extraction time and desorption time, were optimized. Under the optimum conditions, the linear range of the proposed method was 0.3–200 μg/L. The limits of detection were 0.04–0.2 μg/L (S/N = 3). The proposed method was successfully applied to the determination of six phthalate esters in water samples and satisfied spiked recoveries were achieved. These results indicated that the proposed method was appropriate for the determination of trace phthalate esters in environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号