首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E. coli and Salmonella are two of the most common bacterial pathogens involved in foodborne and waterborne related deaths. Hence, it is critical to develop rapid and sensitive detection strategies for near-outbreak applications. Reported is a simple and specific assay to detect as low as 1 CFU mL−1 of E. coli in water within 6 hours by targeting the bacteria's surface protease activity. The assay relies on polythiophene acetic acid (PTAA) as an optical reporter and a short unlabeled peptide (LL37FRRV) previously optimized as a substrate for OmpT, an outer-membrane protease on E. coli. LL37FRRV interacts with PTAA to enhance its fluorescence while also inducing the formation of a helical PTAA-LL37FRRV construct, as confirmed by circular dichroism. However, in the presence of E. coli LL37FRRV is cleaved and can no longer affect the conformations and optical properties of PTAA. This ability to distinguish between an intact and cleaved peptide was investigated in detail using LL37FRRV sequence variants.  相似文献   

2.
Identifying peptide substrates that are efficiently cleaved by proteases gives insights into substrate recognition and specificity, guides development of inhibitors, and improves assay sensitivity. Peptide arrays and SAMDI mass spectrometry were used to identify a tetrapeptide substrate exhibiting high activity for the bacterial outer‐membrane protease (OmpT). Analysis of protease activity for the preferred residues at the cleavage site (P1, P1′) and nearest‐neighbor positions (P2, P2′) and their positional interdependence revealed FRRV as the optimal peptide with the highest OmpT activity. Substituting FRRV into a fragment of LL37, a natural substrate of OmpT, led to a greater than 400‐fold improvement in OmpT catalytic efficiency, with a k cat/K m value of 6.1×106 L mol−1 s−1. Wild‐type and mutant OmpT displayed significant differences in their substrate specificities, demonstrating that even modest mutants may not be suitable substitutes for the native enzyme.  相似文献   

3.
4.
5.
Distance fingerprinting : Pulsed electron–electron double resonance spectroscopy (PELDOR) is applied to the octameric membrane protein complex Wza of E. coli. The data yielded a detailed distance fingerprint of its periplasmic region that compares favorably to the crystal structure. These results provide the foundation to study conformation changes from interaction with partner proteins.

  相似文献   


6.
7.
Exosomes are small (30–100 nm) membrane vesicles that serve as regulatory agents for intercellular communication in cancers. Currently, exosomes are detected by immuno‐based assays with appropriate pretreatments like ultracentrifugation and are time consuming (>12 h). We present a novel pretreatment‐free fluorescence‐based sensing platform for intact exosomes, wherein exchangeable antibodies and fluorescent reporter molecules were aligned inside exosome‐binding cavities. Such antibody‐containing fluorescent reporter‐grafted nanocavities were prepared on a substrate by well‐designed molecular imprinting and post‐imprinting modifications to introduce antibodies and fluorescent reporter molecules only inside the binding nanocavities, enabling sufficiently high sensitivity to detect intact exosomes without pretreatment. The effectiveness of the system was demonstrated by using it to discriminate between normal exosomes and those originating from prostate cancer and analyze exosomes in tear drops.  相似文献   

8.
We present in‐membrane chemical modification (IMCM) for obtaining selective chromophore labeling of intracellular surface cysteines in G‐protein‐coupled receptors (GPCRs) with minimal mutagenesis. This method takes advantage of the natural protection of most cysteines by the membrane environment. Practical use of IMCM is illustrated with the site‐specific introduction of chromophores for NMR and fluorescence spectroscopy in the human κ‐opioid receptor (KOR) and the human A2A adenosine receptor (A2AAR). IMCM is applicable to a wide range of in vitro studies of GPCRs, including single‐molecule spectroscopy, and is a promising platform for in‐cell spectroscopy experiments.  相似文献   

9.
Integral membrane proteins are amphipathic molecules crucial for all cellular life. The structural study of these macromolecules starts with protein extraction from the native membranes, followed by purification and crystallisation. Detergents are essential tools for these processes, but detergent‐solubilised membrane proteins often denature and aggregate, resulting in loss of both structure and function. In this study, a novel class of agents, designated mannitol‐based amphiphiles (MNAs), were prepared and characterised for their ability to solubilise and stabilise membrane proteins. Some of MNAs conferred enhanced stability to four membrane proteins including a G protein‐coupled receptor (GPCR), the β2 adrenergic receptor (β2AR), compared to both n‐dodecyl‐d ‐maltoside (DDM) and the other MNAs. These agents were also better than DDM for electron microscopy analysis of the β2AR. The ease of preparation together with the enhanced membrane protein stabilisation efficacy demonstrates the value of these agents for future membrane protein research.  相似文献   

10.
The synthesis of mannose‐substituted tetraphenylethenes (TPEs) and their aggregation‐induced emission (AIE) behavior, induced by interactions with concanavalin A (Con A), are reported. A mixture of the mannose‐TPE conjugates and Con A in a buffer solution displays an intense blue emission on agglutination within a few seconds, which serves as a “turn‐on” fluorescent sensor for lectins. The sensing is also selective: the conjugates act as a sensor for Con A, but do not sense a galactose‐binding lectin, PNA. Con A‐recognition is not affected even in the presence of other proteins in a mixture. The conjugates also exhibit high sensitivity to detect Con A. An increased sensitivity of the conjugates results if mannopyranoside substituents are linked to the TPE‐core unit with a flexible chain and/or when the number of mannose residues increases.  相似文献   

11.
The doppel protein (Dpl) is the first homologue of the prion protein (PrPC) to be discovered; it is overexpressed in transgenic mice that lack the prion gene, resulting in neurotoxicity. The whole prion protein is able to inhibit Dpl neurotoxicity, and its N‐terminal domain is the determinant part of the protein function. This region represents the main copper(II) binding site of PrPC. Dpl is able to bind at least one copper ion, and the specific metal‐binding site has been identified as the histidine residue at the beginning of the third helical region. However, a reliable characterization of copper(II) coordination features has not been reported. In a previous paper, we studied the copper(II) interaction with a peptide that encompasses only the loop region potentially involved in metal binding. Nevertheless, we did not find a complete match between the EPR spectroscopic parameters of the copper(II) complexes formed with the synthesized peptide and those reported for the copper(II) binding sites of the whole protein. Herein, the synthesis of the human Dpl peptide fragment hDpl(122–139) (Ac‐KPDNKLHQQVLWRLVQEL‐NH2) and its copper(II) complex species are reported. This peptide encompasses the third α helix and part of the loop linking the second and the third helix of human doppel protein. The single‐point‐mutated peptide, hDpl(122–139)D124N, in which aspartate 124 replaces an asparagine residue, was also synthesized. This peptide was used to highlight the role of the carboxylate group on both the conformation preference of the Dpl fragment and its copper(II) coordination features. NMR spectroscopic measurements show that the hDpl(122–139) peptide fragment is in the prevailing α‐helix conformation. It is localized within the 127–137 amino acid residue region that represents a reliable conformational mimic of the related protein domain. A comparison with the single‐point‐mutated hDpl(122–139)D124N reveals the significant role played by the aspartic residue in addressing the peptide conformation towards a helical structure. It is further confirmed by CD measurements. Potentiometric titrations were carried out in aqueous solutions to obtain the stability constant values of the species formed by copper(II) with the hDpl peptides. Spectroscopic studies (EPR, NMR, CD, UV/Vis) were performed to characterize the coordination environments of the different metal complexes. The EPR parameters of the copper(II) complexes with hDpl(122–139) match those of the previously reported copper(II) binding sites of the whole hDpl. Addition of the copper(II) ion to the peptide fragment does not alter the helical conformation of hDpl(122–139), as shown by CD spectra in the far‐UV region. The aspartate‐driven preorganized secondary structure is not significantly modified by the involvement of Asp124 in the copper(II) complex species that form in the physiological pH range. To elaborate on the potential role of copper(II) in the recently reported interaction between the PrPC and Dpl, the affinity of the copper(II) complexes towards the prion N terminus domain and the binding site of Dpl was reported.  相似文献   

12.
Employing introductory (3‐21G RHF) and medium‐size (6‐311++G** B3LYP) ab initio calculations, complete conformational libraries, containing as many as 27 conformers, have been determined for diamide model systems incorporating the amino acids valine (Val) and phenylalanine (Phe). Conformational and energetic properties of these libraries were analyzed. For example, significant correlation was found between relative energies from 6‐311++G** B3LYP and single‐point B3LYP/6‐311++G**//RHF/3‐21G calculations. Comparison of populations of molecular conformations of hydrophobic aromatic and nonaromatic residues, based on their ab initiorelative energies, with their natural abundance indicates that, at least for the hydrophobic core of proteins, the conformations of Val (Ile, Leu) and Phe (Tyr, Trp) are controlled by the local energetic preferences of the respective amino acids. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 732–751, 2001  相似文献   

13.
14.
Membrane proteins are key functional players in biological systems. These biomacromolecules contain both hydrophilic and hydrophobic regions and thus amphipathic molecules are necessary to extract membrane proteins from their native lipid environments and stabilise them in aqueous solutions. Conventional detergents are commonly used for membrane protein manipulation, but membrane proteins surrounded by these agents often undergo denaturation and aggregation. In this study, a novel class of maltoside‐bearing amphiphiles, with a xylene linker in the central region, designated xylene‐linked maltoside amphiphiles (XMAs) was developed. When these novel agents were evaluated with a number of membrane proteins, it was found that XMA‐4 and XMA‐5 have particularly favourable efficacy with respect to membrane protein stabilisation, indicating that these agents hold significant potential for membrane protein structural study.  相似文献   

15.
16.
Membrane proteins are inherently amphipathic and undergo dynamic conformational changes for proper function within native membranes. Maintaining the functional structures of these biomacromolecules in aqueous media is necessary for structural studies but difficult to achieve with currently available tools, thus necessitating the development of novel agents with favorable properties. This study introduces several new glucose‐neopentyl glycol (GNG) amphiphiles and reveals some agents that display favorable behaviors for the solubilization and stabilization of a large, multi‐subunit membrane protein assembly. Furthermore, a detergent structure–property relationship that could serve as a useful guideline for the design of novel amphiphiles is discussed.  相似文献   

17.
18.
A triethyleneglycol (TEG) chain, a linear peptide, and a cyclic peptide labeled with 7‐methoxycoumarin‐3‐carboxylic acid (MC) and 7‐diethylaminocoumarin‐3‐carboxylic acid (DAC) were used to thoroughly study Förster resonance energy transfer (FRET) in inclusion complexes. 1H NMR evidence was given for the formation of a 1:1 inclusion complex between β‐cyclodextrin (β‐CD) and the fluorophore moieties of model compounds. The binding constant was 20 times higher for DAC than for MC derivatives. Molecular modeling provided additional information. The UV/Vis absorption and fluorescence properties were studied and the energy transfer process was quantified. Fluorescence quenching was particularly strong for the peptide derivatives. The presence of β‐CDs reduced the FRET efficiency slightly. Dye‐labeled peptide derivatives can thus be used to form inclusion complexes with β‐CDs and retain most of their FRET properties. This paves the way for their subsequent use in analytical devices that are designed to measure the activity of matrix metalloproteinases.  相似文献   

19.
20.
Solid‐state NMR is a powerful tool for studying membrane proteins in a native‐like lipid environment. 3D magic angle spinning (MAS) NMR was employed to characterize the structure of E.coli diacylglycerol kinase (DAGK) reconstituted into its native E.coli lipid membranes. The secondary structure and topology of DAGK revealed by solid‐state NMR are different from those determined by solution‐state NMR and X‐ray crystallography. This study provides a good example for demonstrating the influence of membrane environments on the structure of membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号