首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ternary blend structure has been demonstrated as an effective approach to increase the power conversion efficiency of organic solar cells. An effective approach to enhance the power conversion efficiency of ternary solar cells is based on two non‐fullerene acceptors with complimentary absorption range and balanced crystallinity. In this work, we have introduced a high crystallinity small‐molecule acceptor, named C8IDTT‐4Cl with appropriate alkyl side chains into a low crystalline blend of conjugated polymer donor PBDT‐TPD and fused‐ring electron acceptor ITIC‐4F. A ternary device based on the blend PBDT‐TPD:ITIC‐4F:C8IDTT‐4Cl exhibits a best power conversion efficiency of 9.51% with a simultaneous improvement of the short‐circuit current density to 18.76 mA·cm–2 and the fill factor up to 67.53%. The absorption onset for C8IDTT‐4Cl is located at 900 nm, so that the well complementary light absorption is beneficial to the photocurrent. In addition, the existence of high crystallinity C8IDTT‐4Cl in the ternary device is found helpful to modulate crystallinity, improve heterojunction morphologies and stacking structure, therefore to realize higher charge mobility and better performance.  相似文献   

2.
《中国化学》2017,35(11):1687-1692
An acceptor‐donor‐acceptor (A‐D‐A) three‐dimensional (3D ) small molecule acceptor (SFTTIC ), using spirobifluorene as the core unit linking with four thieno[3,2‐b ]thiophenes (TT ) and end‐capped with 2‐(3‐oxo ‐2,3‐dihydro‐1H ‐inden‐1‐ylidene)malononitrile (INCN ) was developed for solution processed organic solar cells. SFTTIC has a high absorption coefficient up to 3.12 × 105 mol−1•cm−1, good thermal stability and appropriate energy levels. The optimized power conversion efficiency (PCE ) of 5.66% and 4.65% was achieved for the devices with PBDB ‐T:SFTTIC and PTB7 ‐Th:SFTTIC , respectively.  相似文献   

3.
《中国化学》2018,36(6):495-501
In this work, a new A‐D‐A type nonfullerene small molecular acceptor SiIDT‐IC, with a fused‐ring silaindacenodithiophene (SiIDT) as D unit and 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile (INCN) as the end A unit, was design and synthesized. The SiIDT‐IC film shows absorption peak and edge at 695 and 733 nm, respectively. The HOMO and LUMO of SiIDT‐IC are of −5.47 and −3.78 eV, respectively. Compared with carbon‐bridging, the Si‐bridging can result in an upper‐lying LUMO level of an acceptor, which is benefit to achieve a higher open‐circuit voltage in polymer solar cells (PSCs). Complementary absorption and suitable energy level alignment between SiIDT‐IC and wide bandgap polymer donor PBDB‐T were found. For the PBDB‐T:SiIDT‐IC based inverted PSCs, a D/A ratio of 1: 1 was optimal to achieve a power conversion efficiency (PCE) of 7.27%. With thermal annealing (TA) of the blend film, a higher PCE of 8.16% could be realized due to increasing of both short‐circuit current density and fill factor. After the TA treatment, hole and electron mobilities were elevated to 3.42 × 10−4 and 1.02 × 10−4 cm2·V−1·s−1, respectively. The results suggest that the SiIDT, a Si‐bridged fused ring, is a valuable D unit to construct efficient nonfullerene acceptors for PSCs.  相似文献   

4.
To design high efficiency polymer solar cells(PSCs), it is of great importance to develop suitable polymer donors that work well with the low bandgap acceptors, providing complementary absorption, forming interpenetrating networks in the active layers and minimizing energy loss. Recently, we developed a series of two-dimension-conjugated polymers based on bithienylbenzodithiophene-alt-benzotriazole backbone bearing different conjugated side chains, generally called J-series polymers. They are medium energy bandgap(Eg) polymers(Eg of ca. 1.80 eV)with strong absorptions in the range of 400-650 nm, and exhibit ordered crystalline structures, high hole mobilities, and more interestingly,tunable energy levels depending on the structure variations. In this feature article, we highlight our recent efforts on the design and synthesis of those J-series polymer donors, including an introduction on the polymer design strategy and emphasis on the crucial function of differential conjugated side chain. Finally, the future opportunities and challenges of the J-series polymers in PSCs are discussed.  相似文献   

5.
High‐molecular‐weight conjugated polymer HD‐PDFC‐DTBT with N‐(2‐hexyldecyl)‐3,6‐difluorocarbazole as the donor unit, 5,6‐bis(octyloxy)benzothiadiazole as the acceptor unit, and thiophene as the spacer is synthesized by Suzuki polycondensation. HD‐PDFC‐DTBT shows a large bandgap of 1.96 eV and a high hole mobility of 0.16 cm2 V−1 s−1. HD‐PDFC‐DTBT:PC71BM‐based inverted polymer solar cells (PSCs) give a power conversion efficiency (PCE) of 7.39% with a Voc of 0.93 V, a Jsc of 14.11 mA cm−2, and an FF of 0.56.

  相似文献   


6.
设计合成了一种中等带隙共轭聚合物,聚[N-(2-己基癸基)-2,2'-二噻吩-3,3'-二甲酰亚胺-交替共聚-5,5-(2,5-双(3-癸氧基噻吩)-2-噻吩基)-噻吩)](PBTI3T-O),其光谱吸收覆盖波长从400 nm到720 nm,具有较宽的吸收范围,同时易溶于氯苯溶剂,利于溶液加工。 PBTI3T-O与[6,6]-苯基-C71-丁酸异甲酯(PC71BM)复合薄膜的空穴迁移率为5.90×10-3 cm2/(V·s),该迁移率高于其它大部分聚合物电池给体材料。 由于PBTI3T-O较高的空穴迁移率,基于PBTI3T-O/PC71BM的器件在活性层厚度为237 nm时,效率可以达到5.56%。 即使活性层膜厚进一步增加到约300 nm时,器件的效率仍能够保持其最高器件效率的97%,可见其具有在大面积加工工艺中的应用潜力。  相似文献   

7.
Organic–inorganic halide perovskite solar cells (PSCs) have attracted much attention due to their rapid increase in power conversion efficiencies (PCEs), and many efforts are devoted to further improving the PCEs. Designing highly efficient hole transport materials (HTMs) for PSCs may be one of the effective ways. Herein we theoretically designed three new HTMs (FDT−N, FDT−O, and FDT−S) by introducing a nitrogen-phenyl group, an oxygen atom, and a sulfur atom into the spiro core of an experimentally synthesized HTM (FDT), respectively. And then we performed quantum chemical calculation to study their application potential. The results show that the devices with FDT−O and FDT−S instead of FDT may have higher open circuit voltages owing to their lower highest occupied molecular orbital (HOMO) energy levels. Moreover, FDT−S exhibits the best hole transport performance among the studied HTMs, which may be due to the significant HOMO-HOMO overlap in the hole hopping path with the largest transfer integral. Furthermore, the results on interface properties indicate that introducing oxygen and sulfur atoms can enhance the MAPbI3/HTM interface interaction. The present work not only offers two promising HTMs (FDT−O and FDT−S) for PSCs but also provides theoretical help for subsequent research on HTMs.  相似文献   

8.
《中国化学》2017,35(12):1813-1823
We report herein an efficient A1‐C≡C‐A2‐C≡C‐A1 type small‐molecule 4,4'‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐ indacene (BODIPY) acceptor (A1=BODIPY and A2=diketopyrrolopyrrole (DPP)) by following the A‐to‐A excited electron delocalization via the BODIPY meso ‐position, the inherent directionality for the excited electron delocalization. The lowest unoccupied molecular orbital (LUMO) delocalizes across over whole the two flanking A1 and the central A2, and the highest occupied molecular orbital (HOMO) localizes dominantly on the ‐C≡C‐DPP‐C≡C‐ segment. The excited electron upon light excitation of the DPP segment delocalizes over both the BODIPY and DPP segments. The acceptor in chloroform shows an unprecedented plateau‐like broad absorption between 550 and 700 nm with a large FWHM value of 195 nm. Upon transition into solid film, the acceptor shows absorption in the whole near ultraviolet‐visible‐near infrared wavelength region (300‐830 nm) with a low band gap of 1.5 eV and a maximum absorptivity of 0.85×105 cm‐1. Introduction of the ethynyl spacer between the A1 and A2 and the close BODIPY‐to‐DPP LUMO energy levels are crucial for the excited π−electron delocalization across over whole the conjugation backbone. A power conversion efficiency of 6.60% was obtained from the ternary non‐fullerene solar cell with PTB7‐Th:p ‐DTS(FBTTh2)2 (0.5 : 0.5) as the donor materials, which is the highest value among the non‐fullerene organic solar cells with BODIPY as the electron acceptor material.  相似文献   

9.
《中国化学》2018,36(4):280-286
We successfully designed and synthesized two BDT‐BT‐T (BDT=benzo[1,2‐b:4,5‐b']dithiophene, BT‐T=4,7‐dithien‐2‐yl‐2,1,3‐benzothiadiazole) based polymers as the electron donor for application in all‐polymer solar cells (all‐PSCs). By adopting N2200 as the electron acceptor, we systematically investigated the impact of fluorination on the charge transfer, transport, blend morphology and photovoltaic properties of the relevant all‐PSCs. A best power conversion efficiency (PCE) of 3.4% was obtained for fluorinated PT‐BT2F/N2200 (BT2F=difluorobenzo[c][1,2,5]thiadiazole) all‐PSCs in comparison with that of 2.7% in non‐fluorinated PT‐BT/N2200 (BT=benzothiadiazole) based device. Herein, all‐polymers blends adopting either non‐fluorinated PT‐BT or fluorinated PT‐BT2F exhibit similar morphology features. In depth optical spectrum measurements demonstrate that molecular fluorination can further enhance charge transfer between donor and acceptor polymer. Moreover, all‐polymer blends exhibit improved hole mobilities and more balanced carriers transport when adopting fluorinated donor polymer PT‐BT2F. Therefore, although the PCE is relatively low, our findings may become important in understanding how subtle changes in molecular structure impact relevant optoelectronic properties and further improve the performance of all‐PSCSs.  相似文献   

10.
Over the past few years, non‐fullerene organic solar cells have been a focus of research and their power conversion efficiencies have been improved dramatically from about 6 % to over 14 %. In addition to innovations in non‐fullerene acceptors, the ongoing development of polymer donors has contributed significantly to the rapid progress of non‐fullerene organic solar cell performance. This Minireview highlights the polymer donors that enable high‐performance non‐fullerene organic solar cells. We show the impressive photovoltaic devices results achieved by some of important classes of conjugated polymer systems in non‐fullerene organic solar cells. We discuss the molecular design strategies as far as developing matching polymer donors for non‐fullerene acceptors. We conclude with a brief summary and outlook for advances in donor polymers required for commercialization.  相似文献   

11.
The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this level of performance. The use of a hole transport material (HTM) remains indispensable in perovskite solar cells. Perovskites can conduct holes, but they are present at low levels, and for efficient charge extraction a HTM layer is a prerequisite. Herein we provide an overview of the diverse types of HTM available, from organic to inorganic, in the hope of encouraging further research and the optimization of these materials.  相似文献   

12.
Branched‐alkyl‐substituted poly(thieno[3,4‐c]pyrrole‐4,6‐dione‐alt‐3,4‐difluorothiophene) (PTPD[2F]T) can be used as a polymer acceptor in bulk heterojunction (BHJ) solar cells with a low‐band‐gap polymer donor (PCE10) commonly used with fullerenes. The “all‐polymer” BHJ devices made with PTPD[2F]T achieve efficiencies of up to 4.4 %. While, to date, most efficient polymer acceptors are based on perylenediimide or naphthalenediimide motifs, our study of PTPD[2F]T polymers shows that linear, all‐thiophene systems with adequately substituted main chains can also be conducive to efficient BHJ solar cells with polymer donors.  相似文献   

13.
All‐polymer solar cells (all‐PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)‐based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state‐of‐the‐art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI‐based polymer acceptor. Herein, a rhodanine‐based dye molecule was introduced into the NDI‐based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up‐shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive‐free all‐PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all‐PSCs to date. These results indicate that incorporating a dye into the n‐type polymer gives insight into the precise design of high‐performance polymer acceptors for all‐PSCs.  相似文献   

14.
Electrochemical impedance spectroscopy (EIS) and transient voltage decay measurements are applied to compare the performance of dye sensitized solar cells (DSCs) using organic electrolytes, ionic liquids and organic‐hole conductors as hole transport materials (HTM). Nano‐crystalline titania films sensitized by the same heteroleptic ruthenium complex NaRu(4‐carboxylic acid‐4′‐carboxylate) (4,4′‐dinonyl‐2,2′‐bipyridyl)(NCS)2 , coded Z‐907Na are employed as working electrodes. The influence of the nature of the HTM on the photovoltaic figures of merit, that is, the open circuit voltage, short circuit photocurrent and fill factor is evaluated. In order to derive the electron lifetime, as well as the electron diffusion coefficient and charge collection efficiency, EIS measurements are performed in the dark and under illumination corresponding to realistic photovoltaic operating conditions of these mesoscopic solar cells. A theoretical model is established to interpret the frequency response off the impedance under open circuit conditions, which is conceptually similar to photovoltage transient decay measurements. Important information on factors that govern the dynamics of electron transport within the nanocrystalline TiO2 film and charge recombination across the dye sensitized heterojunction is obtained.  相似文献   

15.
空穴传输层(HTLs)厚度对反式钙钛矿太阳能电池(PSCs)性能具有重大影响,因其显著影响太阳光透过和HTLs的空穴传输性能。几个纳米至十几个纳米厚度的超薄HTLs在减少伴生吸收、电荷传输损失和材料消耗等方面具有明显优势。目前,有许多成熟的制备超薄无机HTLs的方法,并在反式和叠层PSCs中得到广泛研究与应用。最近,一些关于有机超薄HTLs的新型制备方法也展现出良好的性能并逐渐引起相关领域研究者关注。在此,本文主要总结反式PSCs中超薄HTLs的研究进展与应用,关注其未来发展的挑战和方向,为该领域进一步的研究提供参考。  相似文献   

16.
Demonstrated in this work is a simple random ternary copolymerization strategy to synthesize a series of polymer acceptors, PTPBT‐ETx, by polymerizing a small‐molecule acceptor unit modified from Y6 with a thiophene connecting unit and a controlled amount of an 3‐ethylesterthiophene (ET) unit. Compared to PTPBT of only Y6‐like units and thiophene units, PTPBT‐ETx (where x represents the molar ratio of the ET unit) with an incorporated ET unit in the ternary copolymers show up‐shifted LUMO energy levels, increased electron mobilities, and improved blend morphologies in the blend film with the polymer donor PBDB‐T. And the all‐polymer solar cell (all‐PSC) based on PBDB‐T:PTPBT‐ET0.3 achieved a high power conversion efficiency over 12.5 %. In addition, the PTPBT‐ET0.3‐based all‐PSC also exhibits long‐term photostability over 300 hours.  相似文献   

17.
《中国化学》2018,36(6):515-518
An isoindigo‐based “double‐cable” conjugated polymer bearing perylene bisimide side units was developed via Stille polymerization for application in single‐component polymer solar cells, in which a power conversion efficiency of 1% with broad photo‐response from 300 nm to 800 nm was achieved. There is no evidence of large phase separation confirmed by AFM images and photoluminescence (PL) spectra. The space charge limit current measurements and light intensity dependence measurements indicate that the low electron mobility and the significant recombination of photogenerated charge carriers in active layer mainly account for the low performance of our solar cells. Our results suggest that these “double‐cable” are promising candidates for use in single‐component polymer solar cells with NIR photoresponse.  相似文献   

18.
《化学:亚洲杂志》2017,12(7):721-725
Derived from perylenediimide (PDI) building blocks, 3D PDI molecules are considered as a type of promising structure to overcome molecular aggregation, thus improving the performance of organic solar cells. Herein, we report a novel PDI‐based derivative, SCPDT‐PDI4 , with four PDI units connected to a unique spiro core. Attributed to this novel molecular design, SCPDT‐PDI4 exhibits a rigid 3D structure, in which the aggregation tendency of PDI chromophores could be effectively attenuated. Additionally, strong intramolecular charge transfer and high charge mobility are achieved due to the well‐conjugated structure and electron‐rich property of SCPDT. Therefore, fullerene‐free organic solar cells based on SCPDT‐PDI4 and PTB7‐Th achieve a remarkable high efficiency of 7.11 %. Such an excellent result demonstrates the opportunity of SCPDT to be a promising building block for non‐fullerene acceptors.  相似文献   

19.
The synthesis, characterization, and photophysical and photovoltaic properties of two anthracene‐containing wide‐band‐gap donor and acceptor (D–A) alternating conjugated polymers ( P1 and P2 ) are described. These two polymers absorb in the range of 300–600 nm with a band gap of about 2.12 eV. Polymer solar cells with P1 :PC71BM as the active layer demonstrate a power conversion efficiency (PCE) of 2.23% with a high Voc of 0.96 V, a Jsc of 4.4 mA cm−2, and a comparable fill factor (FF) of 0.53 under simulated solar illumination of AM 1.5 G (100 mW cm−2). In addition, P2 :PC71BM blend‐based solar cells exhibit a PCE of 1.42% with a comparable Voc of 0.89 V, a Jsc of 3.0 mA cm−2, and an FF of 0.53.

  相似文献   


20.
《中国化学》2018,36(5):406-410
All polymer solar cells (all‐PSCs), possessing superior mechanical strength and flexibility, offer the commercialization opportunity of the PSCs for flexible and portable devices. In this work, we designed and synthesized two copolymer acceptors based on dicyanodistyrylbenzene (DCB) and naphthalene diimide (NDI) units. The corresponding copolymer acceptors are denoted as PDCB‐NDI812 and PDCB‐NDI1014. The medium band gap copolymer PBDB‐T was selected as donor material for investigation of the photovoltaic performance. Two all‐PSCs devices showed power conversion efficiencies (PCE) of 4.26% and 3.43% for PDCB‐NDI812 and PDCB‐NDI1014, respectively. The improved PCE was ascribed to the higher short‐circuit current (JSC), greater charge carrier mobility and higher exciton dissociation probability of the PBDB‐T:PDCB‐NDI812 blend film. These results suggest that DCB unit and NDI unit based copolymer acceptors are promising candidates for high performance all‐PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号