首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
An inorganic‐organic hybrid solid (H6/5bppy)5[P2W18O62]·4.5H2O ( 1 ) (bppy = 4‐(5‐(4‐bromophenyl)pyridin‐2‐yl)pyridine) was hydrothermally synthesized by using pre‐constructed Wells‐Dawson type salt α‐K6P2W18O62·15H2O as inorganic moiety. The crystal structure keeps integrated and steady under the interactions together of aryl packing, hydrogen bonding and halogen bonding. X‐ray single crystal structure analysis reveals that compound 1 contains cavities with the sizes of about 6 × 8Å, in which H2O molecules are captured. The hybrid was used as a solid bulk modifier to fabricate a three‐dimensional bulk‐modified carbon paste electrode ( 1 ‐CPE) by direct mixing. The electrochemical and electrocatalytic behavior of the 1 ‐CPE has been studied in detail. The results exhibit that the redox ability of the Wells‐Dawson polyanions can be maintained in the hybrid solid, which has a good electrocatalytic activity toward the reduction of bromate and hydrogen peroxide. A hydrodynamic voltammetric experiment was performed to characterize the electrode as an amperometric sensor for the determination of hydrogen peroxide. The 1 ‐CPE showed long‐term stability and excellent reproducibility of surface renewal.  相似文献   

2.
《化学:亚洲杂志》2017,12(18):2441-2446
A flexible one‐pot strategy with pyramidal SeIV heteroatoms was employed for the assembly of the praseodymium‐containing gly‐decorated polyoxotungstate [{Pr3(H2O)10[Se2W22O76(gly)2]}2(Se2W7O30H2)]18− ( 1 a ), which is constructed from one {Se2W7O30H2} unit and two identical {Pr3(H2O)10[Se2W22O76(gly)2]} units. Furthermore, the catalytic performance of Cs2Na4H12[{Pr3(H2O)10[Se2W22O76(gly)2]}2(Se2W7O30H2)] ⋅ 25 H2O ( 1 ) for alkene epoxidation with hydrogen peroxide was investigated under mild reaction conditions, and the experimental results suggested that compound 1 exhibits good catalytic performance for the epoxidation of cyclooctene.  相似文献   

3.
Two Vanadium‐substituted Keggin‐type polyoxometalates, K3H2[α‐SiVW11O40]?6H2O (SiVW11) and K4H2[γ(1, 2)‐SiV2W10O40]?4H2O (SiV2W10) were first successfully immobilized on 4‐aminobenzoic acid modified glass carbon electrodes respectively by layer‐by‐layer assembly with poly (ethylenimine) (PEI) as counterions. The regular growth processes were monitored by cyclic voltammetry (CV), and it was proved that the multilayer films were uniform and stable. The cyclic voltammetry results indicated that the electrochemical behavior of two multilayer films was similar, and their redox couples are pH‐ and scan rate‐dependent. The multilayer films show favorable electrocatalytic active toward the reduction of NO2?, IO3? and H2O2.  相似文献   

4.
《Polyhedron》1986,5(4):1031-1033
Anchoring of a Keggin-type heteropolyacid (HPA) to a polymeric support and the effect of heterogenization on the HPA catalysis of the oxidation of a primary diol have been studied. A coloured HPA such as H6[Co(II)W12O40] (blue green), H4[SiMo12O40] (yellow) or H3[PMo12O40] (yellow), as the Keggin-type HPA and poly(4-vinylpyridine) as a polymeric support have been used. The anchoring of H6[Co(II)W12O40] has led to a markedly increased stability of the oxidation catalyst.  相似文献   

5.
Under mild conditions, monosubstituted benzyl alcohols were oxidized to benzaldehydes and benzoic acids in the presence of sodium 30-tungstopentaphosphate (Preyssler's anion), [NaP5W30O120]14? , and hydrogen peroxide as an oxidant. This polyanion with high hydrolytic stability (pH = 0–12), high thermal stability, and high acidic strength shows good activities. The effects of various parameters on the yield of the products, including a catalyst type, a nature of the substitutents, and temperature, were studied. Comparison between Keggin's heteropolyacids, H3[PW12O40], H3[PMo12O40], H4[SiW12O40], and H4[SiMo12O40], and Preyssler's anion shows that this polyanion reacts similar to Keggin's acids whitout any degradation of the structure.  相似文献   

6.
A polyoxometalate‐based supramolecular assembly with the formula (Hcpy)6H2[PMo12O40] ( 1 ) [cpy = 4‐(5‐chloropyridin‐2‐yl)pyridine] was prepared and characterized. Noncovalent intermolecular interactions including hydrogen bonds (N–H ··· O–Mo, N–H ··· H–N, and C–H ··· O–Mo), halogen (C–Cl ··· O–Mo), and face‐to‐face π packing coexist in crystal 1 , which serves the insolubility of 1 in aqueous solution. Compound 1 was used as a solid material to fabricate a bulk‐modified carbon paste electrode by direct mixing. Electrochemistry results indicated that 1 is possessed of electrocatalytic activities toward the reduction reactions of chlorate, hydrogen peroxide, and nitrite.  相似文献   

7.
The formation processes of α-Keggin-type [H2W12O40]6− and [H3W12O40]5− complexes were investigated in aqueous WVI (0.05–0.50 M) solutions. The formation of [H2W12O40]6− was ascertained by the appearance of a 183W NMR line at −117 ppm, but no evidence was found for the existence of [H3W12O40]5− in the solution at the accessible pH range. The addition of (CH3)4N+ (Me4N+) to the WVI solution directly precipitated the (Me4N)6[H2W12O40] salt. On the other hand, the addition of the larger Bu4N+ cation precipitates the (Bu4N)4.5H0.5[H3W12O40] salt, because a naked proton formed during the crystallization process or in the solid state may enter into the Keggin shell to produce [H3W12O40]5−. This explanation is based on the fact that [H2W12O40]6− is not spontaneously converted into [H3W12O40]5− in acidified aqueous solution. On the basis of their voltammetric properties, a simple diagnostic criterion was developed to distinguish between [H2W12O40]6− and [H3W12O40]5−.  相似文献   

8.
Two new organic-inorganic hybrid solids containing Keggin ions and ruthenium complexes have been synthesized and characterized by FT-IR, UV-vis, luminescence, X-ray, and TG analysis. In KNa[Ru(bpy)3]2[H2W12O40]·8H2O (1), the [Ru(bpy)3]2+ (bpy=2,2′-bipyridine) complex ions are located in between the infinite one-dimensional double-chains formed by adjacent Keggin anions [H2W12O40]6− linked through {KO7} and {NaO6} polyhedra, while in K6[Ru(pzc)3]2[SiW12O40]•12H2O (2), the [Ru(pzc)3] (pzc=pyrazine-2-carboxylate) complex anions are confined by layered networks of the [SiW12O40]4− clusters connected by potassium ions. Both compounds exhibit three-dimensional frameworks through noncovalent interactions such as hydrogen bonds and anion?π interactions. Additionally, compound 1 shows strong luminescence at 604 nm in solid state at room temperature.  相似文献   

9.
《Electroanalysis》2018,30(8):1621-1626
We report the advantages of hybrid nanomaterials prepared with electrogenerated ferrites (MFe2O4; M: Co, Mn) and multi‐walled carbon nanotubes (MWCNTs) or thermally reduced graphene oxide (TRGO) on the electro‐reduction of hydrogen peroxide. Glassy carbon electrodes (GCE) modified with these hybrid nanomaterials dispersed in Nafion/isopropanol demonstrated a clear synergism on the catalytic reduction of reduction of hydrogen peroxide at pH 13.00. The intimate interaction between MFe2O4 and carbon nanomaterials allowed a better electronic transfer and a facilitated regeneration of M2+ at the carbon nanomaterials, reducing the charge transfer resistances for hydrogen peroxide reduction and increasing the sensitivities of the amperometric response.  相似文献   

10.
《Polyhedron》1987,6(6):1513-1515
A novel rapid route for the preparation of the Keggin-type [Co(II)W12O40]6− heteropolyanion was found by using the [Co(ox)3]3− complex and 30% aqueous hydrogen peroxide. The intermediate dicobalt species [Co(II)Co(II)W11O40H2]8− was directly isolated in high yield and the final product was easily and rapidly derived from it.  相似文献   

11.
The present work reports for the first time on the synthesis, characterization and performance of vanadium hexacyanoferrate (VHCF) as electrocatalyst of hydrogen peroxide. VHCF was synthesized by mixing V2O5 · nH2O xerogel with ascorbic acid and K4[Fe(CN)6] in double distilled water. X-ray powder diffraction, energy dispersive spectroscopy, scanning electron microscopy, and IR-spectroscopy data suggest the formation of nanocrystalline (mean crystal size 11 nm) compound with a tentative molecular formula K2(VO)3[Fe(CN)6]2. Composite films of VHCF with poly(vinyl alcohol) were developed over a glassy carbon electrode, and then covered with different (neutral, positively or negatively charged) membranes. The effect of each membrane on the working stability of the resultant sensors was evaluated. Cyclic voltammetry experiments showed that composite films exhibit a pair of reversible redox peaks, and a remarkable low potential electrocatalysis on both the reduction and oxidation of hydrogen peroxide. A linear calibration curve over the concentration range 0.01–3.0 mM H2O2 was constructed. Limit of detection (S/N = 3) of 4 μM H2O2 was calculated. The proposed transducer is quite selective to hydrogen peroxide. No response was observed in the presence of 10 mM ascorbic acid.  相似文献   

12.
In this research,a lucunary Keggin structure,[PMo2W9O39]7- was selected as an efficient homogenous catalyst for degradation of an azo dye(direct blue 71) and a simple method was developed for degradation of DB71.The method is based on the oxidation of azo dye in the presence of a lucunary Keggin form of polyoxometalates,K7[PMo2W9O39]? 19H2O,as a homogenous catalyst at room temperature.The reaction is monitored spectrophotometrically by measuring the absorbance of dye atλ=585 nm.Some parameters including concentration of catalyst,concentration of H2O2,pH and reaction time were investigated and optimized. Results show that K7[PMo2W9O39]? 19H2O is more efficient in the presence of hydrogen peroxide.Degradation of dye in the presence of the catalyst and H2O2 could lead to the disappearance approximately 65%of dye after 60 min.But degradation for the same experiment performed in the absence of catalyst or in the absence of H2O2 was 22%or 5%respectively.Approximately 87% azo dyes has been eliminated after 90 min in the presence of catalyst,H2O2 and optimize conditions(0.6 g/L of K7[PMo2- W9O39H9H2O,0.08 mol/L hydrogen peroxide and room temperature).  相似文献   

13.
We report a hybrid material obtained by dispersing the polyoxometalate n-[Bu4-N]2[Mo6O18NC13H9] functionalized with 2-aminofluorene (POMAF) and multi-walled carbon nanotubes (MWCNTs) in 1,3-dioxolane (MWCNT- POMAF). We demonstrate the peroxidase-like activity of the hybrid material and its application for the amperometric quantification of hydrogen peroxide at −0.450 V previous drop-coating at glassy carbon electrodes, with a linear range between 1.0 μM and 6.0 μM and a detection limit of 330 nM. The reproducibility was 2.2 % using one MWCNTs-POMAF dispersion, and 3.9 % using 4 different dispersions. The sensor was successfully used for the quantification of hydrogen peroxide in enriched milk samples.  相似文献   

14.
A novel method for preparation of hydrogen peroxide biosensor was presented based on immobilization of hemoglobin (Hb) on carbon‐coated iron nanoparticles (CIN). CIN was firstly dispersed in a chitosan solution and cast onto a glassy carbon electrode to form a CIN/chitosan composite film modified electrode. Hb was then immobilized onto the composite film with the cross‐linking of glutaraldehyde. The immobilized Hb displayed a pair of stable and quasireversible redox peaks and excellent electrocatalytic reduction of hydrogen peroxide (H2O2), which leading to an unmediated biosensor for H2O2. The electrocatalytic response exhibited a linear dependence on H2O2 concentration in a wide range from 3.1 μM to 4.0 mM with a detection limit of 1.2 μM (S/N=3). The designed biosensor exhibited acceptable stability, long‐term life and good reproducibility.  相似文献   

15.
The design of structurally well‐defined anionic molecular metal–oxygen clusters, polyoxometalates (POMs), leads to inorganic receptors with unique and tunable properties. Herein, an α‐Dawson‐type silicotungstate, TBA8[α‐Si2W18O62] ? 3 H2O ( II ) that possesses a ?8 charge was successfully synthesized by dimerization of a trivacant lacunary α‐Keggin‐type silicotungstate TBA4H6[α‐SiW9O34] ? 2 H2O ( I ) in an organic solvent. POM II could be reversibly protonated (in the presence of acid) and deprotonated (in the presence of base) inside the aperture by means of intramolecular hydrogen bonds with retention of the POM structure. In contrast, the aperture of phosphorus‐centered POM TBA6[α‐P2W18O62]?H2O ( III ) was not protonated inside the aperture. The density functional theory (DFT) calculations revealed that the basicities and charges of internal μ3‐oxygen atoms were increased by changing the central heteroatoms from P5+ to Si4+, thereby supporting the protonation of II . Additionally, II showed much higher catalytic performance for the Knoevenagel condensation of ethyl cyanoacetate with benzaldehyde than I and III .  相似文献   

16.
Peroxide derivatives of heteropoly compounds with Keggin anions [PW12O40]3? and [SiW12O40]4? are isolated in an individual state from concentrated hydrogen peroxide solutions and characterized by physicochemical methods. The structure of Ba2[SiW12O40] · 4H2O2 · 11H2O (I) is solved by X-ray crystallography. Crystals of compound I (H30Ba2O59Si1W12, FW = 3483.21) are monoclinic, space group C2/c, a = 24.981(2) Å, b = 12.2103(11) Å, c = 18.7142(17) Å, β = 122.620(2)o, V = 4808.0(8) Å3, Z = 4. The structure contains Keggin anions [SiW12O40]4?; all hydrogen peroxide molecules are coordinated to Ba2+ cations.  相似文献   

17.
Peroxosolvates of 2‐aminonicotinic acid ( I ) and lidocaine N ‐oxide ( II ) including the largest insular hydrogen peroxide clusters were isolated and their crystal structures were determined by single‐crystal X‐ray diffraction. An unprecedented dodecameric hydrogen peroxide insular cluster was found in I . An unusual cross‐like pentameric cluster was observed in the structure of II . The topology of the (H2O2)12 assembly was never observed for small‐molecule clusters. In I and II new double and triple cross‐orientational disorders of H2O2 were found. Cluster II is the first example of a peroxosolvate crystal structure containing H2O2 molecules with a homoleptic hydrogen peroxide environment. In II , a hydrogen bond between an H2O2 molecule and a peptide group ‐CONH⋅⋅⋅O2H2 was observed for the first time.  相似文献   

18.
Investigation into a hydrothermal reaction system with transition‐metal (TM) ions, 1,4‐bis(1,2,4‐triazol‐1‐lmethyl)benzene (BBTZ) and various charge‐tunable Keggin‐type polyoxometalates (POMs) led to the preparation of four new entangled coordination networks, [CoII(HBBTZ)(BBTZ)2.5][PMo12O40] ( 1 ), [CuI(BBTZ)]5[BW12O40] ? H2O ( 2 ), [CuII(BBTZ)]3[AsWV3WVI9O40] ? 10 H2O ( 3 ), and [CuII5(BBTZ)7(H2O)6][P2W22Cu2O77(OH)2] ? 6 H2O ( 4 ). All compounds were characterized by using elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X‐ray diffraction, and single‐crystal X‐ray diffraction. The mixed valence of W centers in compound 3 was further confirmed by using XPS spectroscopy and bond‐valence sum calculations. In the structural analysis, the entangled networks of 1 – 4 demonstrate zipper‐closing packing, 3D polythreading, 3D polycatenation, and 3D self‐penetration, respectively. Moreover, with the enhancement of POM negative charges and the use of different TM types, the number of nodes in the coordination networks of 1 – 4 increased and the basic metal–organic building motifs changed from a 1D zipper‐type chain (in 1 ) to a 2D pseudorotaxane layer (in 2 ) to a 3D diamond‐like framework (in 3 ) and finally to a 3D self‐penetrating framework (in 4 ). The photocatalytic properties of compounds 1 – 4 for the degradation of methylene blue under UV light were also investigated; all compounds showed good catalytic activity and the photocatalytic activity order of Keggin‐type species was initially found to be {XMo12O40}>{XW12O40}>{XW12?nTMnO40}.  相似文献   

19.
A novel nanocomposite designed by the assembly of the positively charged poly(diallyldimethylammonium chloride) protected gold nanoparticles (PDDA‐GNPs), and the negatively charged multi‐walled carbon nanotubes (MWCNTs) on ITO electrode via electrostatic interaction, was used as a supporting matrix for immobilizing hemoglobin (Hb) to develop a high‐performance hydrogen peroxide (H2O2) biosensor. The cyclic voltammetrys of immobilized Hb showed a pair of well‐defined and quasi‐reversible redox peaks with the formal potential of ‐0.205V (vs. SCE) and the peak‐to‐peak potential separation of 44 mV at a scan rate of 100 mV×s?1 in 0.1 mol×L?1 pH 7.0 PBS. Under the optimized experimental conditions, a linearity range for determination of H2O2 was from 2.0 × 10?6 to 5.2 × 10?4 mol×L?1 with a correlation coefficient of 0.9994 (n = 37) and a detection limit of 8.4 × 10?7 mol×L?1. The biosensor displayed excellent electrochemical and electrocatalytic response to the reduction of H2O2, high sensitivity, long‐term stability, good bioactivity and selectivity.  相似文献   

20.
Two new hybrid compounds based on polyoxometaloborates, (HIm)12[MnBW11O39H]2 · 13H2O ( 1 ) and (HIm)(Im)[(Im)4Zn]2[BW12O40] · 2H2O ( 2 ) (Im = imidazole), have been synthesized and characterized by elemental analyses, IR, UV, TG, and single‐crystal X‐ray diffraction. Compound 1 is made up of [MnBW11O39H]6– polyoxoanions, which are coordinatively linked together by terminal oxygen atoms to yield an unprecedented one‐dimensional chain that represents the first example of one‐dimensional assemblies based on polyoxotungstoborates and transition metal cations. Adjacent inorganic chains are further in close contact by imidazole molecules to form a three‐dimensional supramolecular channel framework by strong hydrogen‐bonding interactions. Compound 2 exhibits a three‐dimensional supramolecular architecture constructed from Keggin‐type polyoxoanions [BW12O40]5– and zinc‐imidazole coordination units by strong hydrogen‐bonding interactions. Furthermore, both compounds exhibit interesting photoluminescence properties at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号