首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TET family enzymes are known for oxidation of the 5-methyl substituent on 5-methylcytosine (5mC) in DNA. 5mC oxidation generates the stable base 5-hydroxymethylcytosine (5hmC), starting an indirect, multi-step process that ends with reversion of 5mC to unmodified cytosine. While probing the nucleobase determinants of 5mC recognition, we discovered that TET enzymes are also proficient as direct N-demethylases of cytosine bases. We find that N-demethylase activity can be readily observed on substrates lacking a 5-methyl group and, remarkably, TET enzymes can be similarly proficient in either oxidation of 5mC or demethylation of N4-methyl substituents. Our results indicate that TET enzymes can act as both direct and indirect demethylases, highlight the active-site plasticity of these FeII/α-ketoglutarate-dependent dioxygenases, and suggest activity on unexplored substrates that could reveal new TET biology.  相似文献   

2.
Ten-eleven-translocation (TET) methyl cytosine dioxygenases play a key role in epigenetics by oxidizing the epigenetic marker 5-methyl cytosine (5mC) to 5-hydroxymethyl cytosine (5hmC), 5-formyl cytosine (5fC), and 5-carboxy cytosine (5cC). Although much of the metabolism of 5mC has been studied closely, certain aspects—such as discrepancies among the observed catalytic activity of TET enzymes and calculated bond dissociation energies of the different cytosine substrates—remain elusive. Here, it is reported that the DNA base 5mC is oxidized to 5hmC, 5fC, and 5cC by a biomimetic iron(IV)-oxo complex, reminiscent of the activity of TET enzymes. Studies show that 5hmC is preferentially turned over compared with 5mC and 5fC and that this is in line with the calculated bond dissociation energies. The optimized syntheses of d3-5mC and d2-5hmC are also reported and in the reaction with the biomimetic iron(IV)-oxo complex these deuterated substrates showed large kinetic isotope effects, confirming the hydrogen abstraction as the rate-limiting step. Taken together, these results shed light on the intrinsic reactivity of the C−H bonds of epigenetic markers and the contribution of the second coordination sphere in TET enzymes.  相似文献   

3.
Methylcytosine (5mC) is mostly symmetrically distributed in CpG sites. Ten‐eleven‐translocation (TET) proteins are the key enzymes involved in active DNA demethylation through stepwise oxidation of 5mC. However, oxidation pathways of TET enzymes in the symmetrically methylated CpG context are still elusive. Employing the unique fluorescence properties of pyrene group, we designed and synthesized a sensitive fluorescence‐based probe not only to target 5‐formylcytosine (5fC) sites, but also to distinguish symmetric from asymmetric 5fC sites in the double stranded DNA context during TET‐dependent 5mC oxidation process. Using this novel probe, we revealed dominant levels of symmetric 5fC among total 5fC sites during in vitro TET‐dependent 5mC oxidation and novel mechanistic insights into the TET‐dependent 5mC oxidation in the mCpG context.  相似文献   

4.
DNA cytosine methylation (5-methylcytosine, 5mC) is the most important epigenetic mark in higher eukaryotes. 5mC in genomes is dynamically controlled by writers and erasers. DNA (cytosine-5)-methyltransferases (DNMTs) are responsible for the generation and maintenance of 5mC in genomes. Active demethylation of 5-methylcytosine (5mC) is achieved by ten-eleven translocation (TET) dioxygenase-mediated oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are further processed by thymine DNA glycosylase (TDG)-initiated base excision repair (BER) to restore unmodified cytosines. The TET-TDG-BER pathway could cause the production of DNA strand breaks and therefore jeopardize the integrity of genomes. Here, we investigated the direct decarboxylation of 5caC in mammalian genomes by using metabolic labeling with 2′-fluorinated 5caC (F-5caC) and mass spectrometry analysis. Our results clearly demonstrated the decarboxylation of 5caC occurring in mammalian genomes, which unveiled that, in addition to the TET-TDG-BER pathway, the direct decarboxylation of TET-produced 5caC constituted a new pathway for active demethylation of 5mC in mammalian genomes.

We demonstrated that the ten-eleven translocation (TET) dioxygenase-mediated oxidation of 5-methylcytosine followed by direct decarboxylation of 5-carboxylcytosine constitutes a novel pathway for active DNA demethylation in mammalian genomes.  相似文献   

5.
Direct electrocatalytic oxidation and simultaneous determination of 5‐methylcytosine (5‐mC) and cytosine(C) were realized in alkaline solutions by differential pulse voltammetry (DPV) based on an electrochemically reduced graphene oxide (er‐GO) modified glassy carbon electrode (er‐GO/GCE). The as‐prepared er‐GO/GCE exhibited good electrocatalytic activity towards the oxidation of 5‐mC and C. Under optimum conditions, the er‐GO/GCE was applied to the simultaneous determination of 5‐mC and C with a significantly improved peak potential resolution (about 150 mV), and a linear relationship can be obtained in the range of 6–200.0 µmol/L and 8–250.0 µmol/L, respectively. In addition, the proposed method was further successfully applied to the analysis of methylation status in short CpG oligonucleotides with satisfactory results.  相似文献   

6.
Methylation of cytosine is a common biological process both in prokaryotic and eukaryotic cells. In addition to 5‐methylcytosine (5mC), some bacterial species contain in their genome N4methylcytosine (N4mC). Methylation at C5 has been shown to enhance the formation of pyrimidine dimeric photoproducts but nothing is known of the effect of N4 methylation on UV‐induced DNA damage. In the present work, we compared the yield and the nature of bipyrimidine photoproducts induced in a series of trinucleotides exhibiting a TXG sequence where X is either T, C, 5mC or N4mC. HPLC associated to tandem mass spectrometry was used to quantify cyclobutane pyrimidine dimers (CPD), (6‐4) photoproducts (64PP) and their Dewar valence isomer. Methylation at position N4 was found to drastically increase the reactivity of C upon exposure to both UVC and UVB and to favor the formation of 64PP. In contrast methylation at C5 increased the yield of CPD at the expense of 64PP. In addition, enhancement of photoreactivity by C5 methylation was much higher in the UVB than in the UVC range. These results show the drastic effect of the methylation site on the photochemistry of cytosine.  相似文献   

7.
8.
DNA methylation and demethylation significantly affect the deactivation and activation processes of gene expression significantly. In particular, C‐5‐methylation of cytosine in the CpG islands is important for the epigenetic modification in genes, which plays a key role in regulating gene expression. The determination of the location and frequency of DNA methylation is important for the elucidation of the mechanisms of cell differentiation and carcinogenesis. Here we designed a psoralen‐conjugated oligonucleotide (PS‐oligo) for the discrimination of 5‐methylcytosine (5‐mC) in DNA. The cross‐linking behavior of psoralen derivatives with pyrimidine bases, such as thymine, uracil and cytosine has been well discussed, but there are no reports which have examined whether cross‐linking efficiency of psoralen with cytosine would be changed with or without C‐5 methylation. We found that the cross‐linking efficiency of PS‐oligo with target‐DNA containing 5‐mC was greatly increased compared to the case of target‐DNA without 5‐mC, approximately seven‐fold higher. Here we report a new aspect of the photocross‐linking behavior of psoralen with 5‐mC that is applicable to a simple, sequence‐specific and quantitative analysis for the discrimination of 5‐mC in DNA, which can be applicable to study the epigenetic behavior of gene expressions.  相似文献   

9.
The radical S‐adenosylmethionine (SAM) superfamily enzymes cleave SAM reductively to generate a highly reactive 5′‐deoxyadenosyl (dAdo) radical, which initiates remarkably diverse reactions. Unlike most radical SAM enzymes, the class C radical SAM methyltransferase NosN binds two SAMs in the active site, using one SAM to produce a dAdo radical and the second as a methyl donor. Here, we report a mechanistic investigation of NosN in which an allyl analogue of SAM (allyl‐SAM) was used. We show that NosN cleaves allyl‐SAM efficiently and the resulting dAdo radical can be captured by the olefin moieties of allyl‐SAM or 5′‐allylthioadenosine (ATA), the latter being a derivative of allyl‐SAM. Remarkably, we found that NosN produced two distinct sets of products in the presence and absence of the methyl acceptor substrate, thus suggesting substrate‐triggered production of ATA from allyl‐SAM. We also show that NosN produces S‐adenosylhomocysteine from 5′‐thioadenosine and homoserine lactone. These results support the idea that 5′‐methylthioadenosine is the direct methyl donor in NosN reactions, and demonstrate great potential to modulate radical SAM enzymes for novel catalytic activities.  相似文献   

10.
Glycoside hydrolase family 99 (GH99) was created to categorize sequence‐related glycosidases possessing endo‐α‐mannosidase activity: the cleavage of mannosidic linkages within eukaryotic N‐glycan precursors (Glc1–3Man9GlcNAc2), releasing mono‐, di‐ and triglucosylated‐mannose (Glc1–3‐1,3‐Man). GH99 family members have recently been implicated in the ability of Bacteroides spp., present within the gut microbiota, to metabolize fungal cell wall α‐mannans, releasing α‐1,3‐mannobiose by hydrolysing αMan‐1,3‐αMan→1,2‐αMan‐1,2‐αMan sequences within branches off the main α‐1,6‐mannan backbone. We report the development of a series of substrates and inhibitors, which we use to kinetically and structurally characterise this novel endo‐α‐1,2‐mannanase activity of bacterial GH99 enzymes from Bacteroides thetaiotaomicron and xylanisolvens. These data reveal an approximate 5 kJ mol?1 preference for mannose‐configured substrates in the ?2 subsite (relative to glucose), which inspired the development of a new inhibitor, α‐mannopyranosyl‐1,3‐isofagomine (ManIFG), the most potent (bacterial) GH99 inhibitor reported to date. X‐ray structures of ManIFG or a substrate in complex with wild‐type or inactive mutants, respectively, of B. xylanisolvens GH99 reveal the structural basis for binding to D ‐mannose‐ rather than D ‐glucose‐configured substrates.  相似文献   

11.
Effects of base pairing on the one-electron oxidation rate of guanine derivatives, guanine, 8-bromoguanine, and 8-oxo-7,8-dihydroguanine have been studied. The one-electron oxidation rate of guanine derivatives was determined by triplet-quenching experiments, using N,N'-dibutylnaphthaldiimide (NDI) in the triplet excited state (3NDI*) and fullerene (C(60)) in the triplet excited state ((3)C(60*)) as oxidants. In all three guanine derivatives studied here, acceleration of the one-electron oxidation was observed upon hydrogen bonding with cytosine, which demonstrates lowering of the oxidation potential of guanine derivatives by base pairing with cytosine. When a methyl or bromo group was introduced to the C5 position of cytosine, acceleration or suppression of the one-electron oxidation relative to the guanine:cytosine base pair was observed, respectively. The results demonstrate that the one-electron oxidation rate of guanine in DNA can be regulated by introducing a substituent on base pairing cytosine.  相似文献   

12.
We report the discovery of three toxicologically relevant methylated phenylarsenical metabolites in the liver of chickens fed 3‐nitro‐4‐hydroxyphenylarsonic acid (ROX), a feed additive in poultry production that is still in use in several countries. Methyl‐3‐nitro‐4‐hydroxyphenylarsonic acid (methyl‐ROX), methyl‐3‐amino‐4‐hydroxyphenylarsonic acid (methyl‐3‐AHPAA), and methyl‐3‐acetamido‐4‐hydroxyphenylarsonic acid (or methyl‐N ‐acetyl‐ROX, methyl‐N ‐AHPAA) were identified in such chicken livers, and the concentration of methyl‐ROX was as high as 90 μg kg−1, even after a five‐day clearance period. The formation of these newly discovered methylated metabolites from reactions involving trivalent phenylarsonous acid substrates, S‐adenosylmethionine, and the arsenic (+3 oxidation state) methyltransferase enzyme As3MT suggests that these compounds are formed by addition of a methyl group to a trivalent phenylarsenical substrate in an enzymatic process. The IC50 values of the trivalent phenylarsenical compounds were 300–30 000 times lower than those of the pentavalent phenylarsenicals.  相似文献   

13.
We describe the quantitative nonlabel electrochemical detection of both cytosine (C) and methylcytosine (mC) in oligonucleotides using newly developed nanocarbon film electrodes. The film consists of nanocrystalline sp2 and sp3 mixed bonds formed by employing the electron cyclotron resonance (ECR) sputtering method. We successfully used this film to develop a simple electrochemical DNA methylation analysis technique based on the measurement of the differences between the oxidation currents of C and mC since our ECR nanocarbon film electrode can directly measure all DNA bases more quantitatively than conventional glassy carbon or boron-doped diamond electrodes. The excellent properties of ECR nanocarbon film electrodes result from the fact that they have a wide potential window while maintaining the high electrode activity needed to oxidize oligonucleotides electrochemically. Proof-of-concept experiments were performed with synthetic oligonucleotides including different numbers of C and mC. This film allowed us to perform both C- and mC-positive assays solely by using the electrochemical oxidation of oligonucleotides without bisulfite or labeling processes.  相似文献   

14.
Nitrogenases are the only enzymes known to reduce molecular nitrogen (N2) to ammonia (NH3). By using methyl viologen (N ,N ′‐dimethyl‐4,4′‐bipyridinium) to shuttle electrons to nitrogenase, N2 reduction to NH3 can be mediated at an electrode surface. The coupling of this nitrogenase cathode with a bioanode that utilizes the enzyme hydrogenase to oxidize molecular hydrogen (H2) results in an enzymatic fuel cell (EFC) that is able to produce NH3 from H2 and N2 while simultaneously producing an electrical current. To demonstrate this, a charge of 60 mC was passed across H2 /N2 EFCs, which resulted in the formation of 286 nmol NH3 mg−1 MoFe protein, corresponding to a Faradaic efficiency of 26.4 %.  相似文献   

15.
The AlkB family demethylases AlkB, FTO, and ALKBH5 recognize differentially methylated RNA/DNA substrates, which results in their distinct biological roles. Here we identify key active‐site residues that contribute to their substrate specificity. Swapping such active‐site residues between the demethylases leads to partially switched demethylation activities. Combined evidence from X‐ray structures and enzyme kinetics suggests a role of the active‐site residues in substrate recognition. Such a divergent active‐site sequence may aid the design of selective inhibitors that can discriminate these homologue RNA/DNA demethylases.  相似文献   

16.
A method for the determination of DNA global methylation, taken as the ratio (%) of 5‐methylcytosine (5mCyt) versus the sum of cytosine (Cyt) and 5mCyt, via gas chromatography/mass spectrometry (GC/MS), was developed and validated. DNA (2.5 µg) was hydrolyzed with aqueous formic acid 88%, spiked with cytosine‐2,4‐13C2,15N3 and 5‐methyl‐2H3‐cytosine‐6‐2H1 as internal standards, and derivatized with N‐methyl‐N‐(tert‐butyldimethylsilyl)trifluoroacetamide and 1% tert‐butyldimethylchlorosilane, in the presence of acetonitrile and pyridine. GC/MS, operating in single ion monitoring mode, separated and specifically detected all nucleobases as tert‐butyldimethylsilyl derivatives, without interferences, with the exception of guanosine. The method was linear throughout the range of clinical interest and had good sensitivity, with a limit of quantification of 3.2 pmol for Cyt and 0.056 pmol for 5mCyt, the latter corresponding to a methylation level of 0.41%. Intra‐ and inter‐day precision and accuracy were below 4.0% for both analytes and methylation. The matrix absolute effect, process efficiency and coefficient of variation ranged from 96.5 to 101.2%. The matrix relative effect was below 1%. The method was applied to the analysis of different human DNAs, including: nonmethylated DNA from PCR (methylation 0.00%), hypermethylated DNA prepared using M.SssI CpG methyltransferase (methylation 18.05%), DNA from peripheral blood leukocytes of healthy subjects (N = 6, median methylation 5.45%), DNA from bone marrow of leukemia patients (N = 5, 3.58%) and DNA from myeloma cell lines (N = 4, 2.74%). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A hyper‐cross‐linked polymer monolithic column, poly(methacrylatoethyl trimethyl ammonium‐co‐vinylbenzene chloride‐co‐divinylbenzene) (MATE‐co‐VBC‐co‐DVB) with phenyl and quaternary ammonium groups was successfully prepared in the current study. The prepared monolith possesses large specific surface area, narrow mesopore size distribution and high column efficiency. The poly(MATE‐co‐VBC‐co‐DVB) monolithic column was demonstrated to have strong anion exchange/reversed‐phase (SAX/RP) mixed‐mode retention for analytes on capillary liquid chromatography (cLC). By using this monolithic column, we developed a rapid and sensitive method for the detection of DNA methylation. Our results showed that six nucleobases (adenine, guanine, cytosine, thymine, uracil, and 5‐methylcytosine (5‐mC)) can be baseline separated within 15 min by electrostatic repulsion and hydrophobic interactions between nucleobases and the monolithic stationary phase. The limit of detection (LOD, signal/noise=3) of 5‐mC is 0.014 pmol and endogenous 5‐mC can be distinctly detected by using only 10 ng genomic DNA, which is comparable to that obtained by mass spectrometry analysis. Furthermore, by using the method developed here, we found that DNA methylation inhibitor 5‐azacytidine (5‐aza‐C) and 5‐aza‐2′‐deoxycytidine (5‐aza‐CdR) could induce a significant decrease of genome‐wide DNA methylation in human lung carcinoma cells (A549) and cervical carcinoma cells (HeLa).  相似文献   

18.
The epigenetic control of genes by the methylation of cytosine resulting in 5‐methylcytosine (5mC) has fundamental implications for human development and disease. Analysis of alterations in DNA methylation patterns is an emerging tool for cancer diagnostics and prognostics. Here we report that two thermostable DNA polymerases, namely the DNA polymerase KlenTaq derived from Thermus aquaticus and the KOD DNA polymerase from Thermococcus kodakaraensis, are able to extend 3′‐mismatched primer strands more efficiently from 5 mC than from unmethylated C. This feature was advanced by generating a DNA polymerase mutant with further improved 5mC/C discrimination properties and its successful application in a novel methylation‐specific PCR approach directly from untreated human genomic DNA.  相似文献   

19.
Cyclobutane pyrimidine dimer (CPD) is a photoproduct formed by two stacked pyrimidine bases through a cycloaddition reaction upon irradiation. Owing to its close association with skin cancer, the mechanism of CPD formation has been studied thoroughly. Among many aspects of CPD, its formation involving 5-methylcytosine (5mC) has been of special interest because the CPD yield is known to increase with C5-methylation of cytosine. In this work, high-level quantum mechanics/molecular mechanics (QM/MM) calculations are used to examine a previously experimentally detected pathway for CPD formation in hetero (thymine-cytosine and thymine-5mC) dipyrimidines, which is facilitated through intersystem crossing in thymine and formation of a triplet biradical intermediate. A DNA duplex model system containing a core sequence TmCG or TCG is used. The stabilization of a radical center in the biradical intermediate by the methyl group of 5mC can lead to increased CPD yield in TmCG compared with its non-methylated counterpart, TCG, thereby suggesting the existence of a new pathway of CPD formation enhanced by 5mC.  相似文献   

20.
Formylglycine‐generating enzymes are of increasing interest in the field of bioconjugation chemistry. They catalyze the site‐specific oxidation of a cysteine residue to the aldehyde‐containing amino acid Cα‐formylglycine (FGly). This non‐canonical residue can be generated within any desired target protein and can subsequently be used for bioorthogonal conjugation reactions. The prototypic formylglycine‐generating enzyme (FGE) and the iron‐sulfur protein AtsB display slight variations in their recognition sequences. We designed specific tags in peptides and proteins that were selectively converted by the different enzymes. Combination of the different tag motifs within a single peptide or recombinant protein enabled the independent and consecutive introduction of two formylglycine residues and the generation of heterobifunctionalized protein conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号