首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, three heavy metals (Cu(II), Pb(II) and Zn(II)) in wide potential window were simultaneously detected on tin film/gold nanoparticles/gold microelectrode (Sn/GNPs/gold microelectrode) by the method of square wave stripping voltammetry. The Sn/GNPs/gold microelectrode was fabricated by in situ plating of a Sn film on a gold nanoparticles (GNPs) modified gold microelectrode. The influence of hydrogen overflow on stripping of Zn(II) on the gold microelectrode was reduced by modification of GNPs, which made the stripping potential of target metals shift positively. The interference of sulfhydryl groups was reduced and the selectivity of the microelectrode was improved due to the addition of Sn in the detection solution. After accumulation at ?1.4 V for 300 s in acetate buffer solution (0.1 mol L?1, pH 4.5), the Sn/GNPs/gold microelectrode revealed a good linear behavior in the examined concentration ranges from 5 to 500 µg L?1 for Cu(II) and Pb(II), and from 10 to 500 µg L?1 for Zn(II), with a limit of detection of 2 µg L?1 for Cu(II), 3 µg L?1 for Pb(II) and 5 µg L?1 for Zn(II) (S/N=3). When compared with a Sb/GNPs/gold microelectrode and a Bi/GNPs/gold microelectrode, the Sn/GNPs/gold microelectrode showed the best stripping performance to Cu(II), Pb(II) and Zn(II). As a new type of environment‐friendly electrode, the Sn/GNPs/gold microelectrode has potential applications for detection of heavy metals.  相似文献   

2.
Gold nanoparticles stabilized in poly(allylamine hydrochloride) (AuNP‐PAH) were synthesized, characterized and applied in the development of a new sensor for the determination of vanillin by square‐wave voltammetry. Under optimized conditions, the calibration curve showed a linear range for vanillin of 0.90 to 15.0 µmol L?1, with a limit of detection of 55 nmol L?1. The sensor demonstrated acceptable selectivity and stability, as well as good intra‐day and inter‐day repeatability and electrode‐to‐electrode repeatability (with relative standard deviations of 3.5, 4.5 and 3.9 %, respectively). The sensor was successfully applied in the determination of vanillin in different commercial samples.  相似文献   

3.
Mercury ions (Hg(II)) are considered highly toxic and hazardous element even at low levels. The contamination of Hg(II) is a global problem. To develop selective and sensitive technique for the detection of Hg(II) has attracted considerable attention. In this study, a multi-component chemically reactive detection conjugate for determination of Hg(II) has been synthesized and a competitive format assay was proposed. In the technique, the chemically reactive capture conjugate was coated on the plate. The reactive detection conjugate was then captured by the capture conjugate. TMB solution was added and catalyzed by HRP molecules immobilized on AuNPs. Finally, the developed enzymatic signal was measured at 450 nm. The linear range of the assay was 0.35–350 ppb with a detection limit of 0.1 ppb. The average recoveries of Hg(II) from mineral water, tap water and lake water were 100.03%, 103.13% and 102.03%, respectively. All coefficients of variation (CVs) were less than 10%. The results are closely correlated with those from inductively coupled plasma mass spectrometry (ICP-MS), which indicated that the developed technique is a reliable method for and sensitive detection of Hg(II) in water samples.  相似文献   

4.
In this study, gold nanoparticles (AuNPs) were electrodeposited on samples of a carbon-paste electrode (CPE) with different thicknesses. The prepared AuNPs were characterized using different analysis techniques, such as FTIR, UV–Vis, SEM, EDX, TEM images, and XRD analysis. The fabricated modified electrode AuNPs/CPE was used for the sensitive detection of Congo red (CR) dye. Electrochemical sensing was conducted using square-wave voltammetry (SWV) in a 0.1 M acetate buffer solution at pH 6.5. The proposed sensor exhibited high efficiency for the electrochemical determination of CR dye with high selectivity and sensitivity and a low detection limit of 0.07 μM in the concentration range of 1–30 μM and 0.7 μM in the concentration range of 50–200 μM. The practical application of the AuNPs/CPE was verified by detecting CR dye in various real samples involving jelly, candy, wastewater, and tap water. The calculated recoveries (88–106%) were within the acceptable range.  相似文献   

5.
Two novel rhodamine-based polystyrene solid-phase fluorescence sensors PS-PA-I and PS-PA-II with different lengths of polyamines were synthesized for Hg(II) determination. The detection mechanism involving the Hg(II) chelation-induced spirocycle open of rhodamine was proposed with the aid of theoretical calculation. The stronger N-Hg bond and the longer polyamine chain in PS-PA-II led to a better selectivity, much higher and more quickly fluorescence response to Hg(II).  相似文献   

6.
《Arabian Journal of Chemistry》2020,13(12):8898-8908
This study reports a facile synthesis of silver nanoparticles (C3-AgNPs) by chemical route, using C3; 2,2′-((1E,1′E)-(propane-1,3-diylbis(azanylylidene))bis(methanylylidene))diphenol (3) and silver nitrate. The formation of nanoparticles was monitored using UV–Vis spectroscopy by the appearance of typical surface plasmon absorption maxima. The synthesized C3-AgNPs were characterized using Fourier-Transform-infrared (FTIR) and atomic force microscopy (AFM) techniques. In addition, the effect of concentration, temperature, time, pH, and stability in salts solution on C3-AgNPs was determined. From AFM, C3-AgNPs were found polydispersed with average size of 29.93 nm. Furthermore, the study reports C3-AgNPs as sensitive protocol for the detection of toxic metal; Hg(II) in tap water. From ten salts tested, C3-AgNPs demonstrated a sensitive and selective spectrophotometric signal and aggregation induced decrease of surface plasmon resonance (SPR) band. The nanosensor probe displayed a sensitive response to Hg(II) in a wide range of concentrations and pH. In addition, the decrease in SPR band of C3-AgNPs due to Hg(II) was not affected by tap water samples. C3-AgNPs also exhibited a redox catalytic potential in dyes degradation. In biological application, C3-AgNPs exhibited significant anticancer and antibacterial potential of 65 to 94% at 24–72 h, and inhibition zone of 7–18 mm, respectively. Hence, the synthesized C3-AgNPs could have promising application in environmental and pharmacological remediation.  相似文献   

7.
《中国化学快报》2020,31(10):2752-2756
Electrochemical analysis is a promising technique for detecting biotoxic and non-biodegradable heavy metals. This article proposes a novel composite electrode based on a polyaniline (PANi) framework doped with bismuth nanoparticle@graphene oxide multi-walled carbon nanotubes (Bi NPs@GO-MWCNTs) for the simultaneous detection of multiple heavy metal ions. Composite electrodes are prepared on screen-printed electrodes (SPCEs) using an efficient dispensing technique. We used a SM200SX-3A dispenser to load a laboratory-specific ink with optimized viscosity and adhesion to draw a pattern on the work area. The SPCE was used as substrate to facilitate cost-effective and more convenient real-time detection technology. Electrochemical techniques, such as cyclic voltammetry and differential pulse voltammetry, were used to demonstrate the sensing capabilities of the proposed sensor. The sensitivity, limit of detection, and linear range of the PANi-Bi NPs@GO-MWCNT electrode are 2.57 × 102 μA L μmol−1 cm−2, 0.01 nmol/L, and 0.01 nmol/L–5 mmol/L and 0.15 × 10−1 μA L μmol−1 cm−2, 0.5 nmol/L, and 0.5 nmol/L–5 mmol/L for mercury ion (Hg(II)) and copper ion (Cu(II)) detection, respectively. In addition, the electrode exhibits a good selectivity and repeatability for Hg(II) and Cu(II) sensing when tested in a complex heavy metal ion solution. The constructed electrode system exhibits a detection performance superior to similar methods and also increases the types of heavy metal ions that can be detected. Therefore, the proposed device can be used as an efficient sensor for the detection of multiple heavy metal ions in complex environments.  相似文献   

8.
吴成新  李阳  张国颖 《高分子学报》2016,(12):1678-1685
基于有机/无机杂化纳米粒子制备了能够对汞离子(Hg~(2+))进行比率型检测的荧光探针.首先通过连续的可逆加成-断裂链转移(RAFT)聚合合成了两亲性嵌段聚合物,P(MPS-co-NBDAE)-b-P(NIPAM-co-Rh BHA).其疏水嵌段为带有三甲基硅氧烷侧基,并标记有荧光能量给体N-(7-硝基-2,1,3-苯并噁二唑)(NBD)基元的聚丙烯酸酯,P(MPS-co-NBDAE);亲水嵌段为共聚有潜在荧光能量受体罗丹明脲衍生物单体(Rh BHA)的温敏性聚(N-异丙基丙烯酰胺),P(NIPAM-co-Rh BHA).由该嵌段聚合物自组装形成的胶束在三乙胺催化作用下水解发生溶胶-凝胶化过程后,得到核交联的有机/无机杂化纳米粒子.在没有Hg~(2+)离子存在时,该杂化纳米粒子溶液只显示出NBD基元发射的绿光;而在有Hg~(2+)离子存在条件下,Hg~(2+)离子可诱导Rh BHA开环为具有荧光发射性能的Rh B基元.由于NBD与Rh B之间的荧光共振能量转移(FRET)效应,杂化纳米粒子溶液的颜色和荧光发射性能均会发生明显的变化,从而实现对水溶液中Hg~(2+)离子的高效选择性检测.而且,升高温度会导致纳米粒子壳层PNIPAM嵌段的塌缩,使NBD和Rh B基元间的空间距离缩短,可进一步提高检测效果.因此,基于该有机/无机杂化纳米粒子的检测体系可用来对Hg~(2+)离子进行高效选择性检测.  相似文献   

9.
A highly efficient electrode material, three-dimensional reduced graphene oxide with varying wrinkles and folds (WRGO), applicable for electrochemical determination of Hg(II) was obtained by treating graphene oxide (GO) with KOH aqueous solution. After alkaline etching, the relatively flat graphene was altered and its self-aggregation was significantly alleviated, producing more wrinkles and folds, which provided more active adsorption sites for heavy metal ions. WRGO-5 modified electrode system herein offers a highest sensitivity of (31.83 μAμM−1) and a lowest LOD of (16.28 nM). Moreover, the electrode sensor possesses good stability and reproducibility.  相似文献   

10.
A cost‐effective and sensitive colorimetric method was described for the determination of chromium(III) ion (Cr3+) by using ethylenediaminetetraacetic acid functionalized gold nanoparticles (EDTA‐AuNPs) as a probe. The stable and dispersed EDTA‐AuNPs were prepared by reducing HAuCl4 with sodium borohydride in presence of EDTA as a capping agent. Upon the addition of Cr3+, the colour of EDTA‐AuNPs solution changed from red to violet, which was in response to the surface plasmon absorption of dispersed and aggregated EDTA‐AuNPs. The procedure allowed the determination of Cr3+ in the range of 0.1–1.0 mol/L. The limit of detection for Cr3+ was 0.08 mol/L. The relative standard deviation was 2.5 % for eight repeated measurements of 0.6 mol/L Cr3+ solution. The method was applied to the determination of Cr3+ in water samples.  相似文献   

11.
We present a new strategy for the label‐free electrochemical detection of DNA hybridization based on gold nanoparticles (AuNPs)/poly(neutral red) (PNR) modified electrode. Probe oligonucledotides with thiol groups at the 5‐end were covalently linked onto the surface of AuNPs/PNR modified electrode via S‐Au binding. The hybridization event was monitored by using differential pulse voltammetry (DPV) upon hybridization generates electrochemical changes at the PNR‐solution interface. A significant decrease in the peak current was observed upon hybridization of probe with complementary target ssDNA, whereas no obvious change was observed with noncomplementary target ssDNA. And the DNA sensor also showed a high selectivity for detecting one‐mismatched and three‐mismatched target ssDNA and a high sensitivity for detecting complementary target ssDNA, the detection limit is 4.2×10?12 M for complementary target ssDNA. In addition, the DNA biosensor showed an excellent reproducibility and stability under the DNA‐hybridization conditions.  相似文献   

12.
基于金纳米颗粒(AuNPs)比表面积大、 尺寸小和能够承载大量DNA片段的特点, 建立了一种免标记、 简便、 快速检测DNA聚合酶Klenow fragment exo-(KF-)的电化学方法. 首先将巯基化的DNA引物片段修饰在金电极上, 然后加入模板DNA链以及修饰有报告DNA链的金纳米颗粒(AuNPs-DNA), 模板DNA链能同时与DNA引物片段和修饰在AuNPs上的报告DNA链进行互补杂交形成"三明治"结构, 从而将AuNPs-DNA修饰在电极表面; 当加入电活性物质钌铵(RuHex)后, RuHex可通过静电吸附作用结合在DNA上. AuNPs上修饰的报告DNA链能够吸附大量RuHex, 导致电化学信号放大. 当加入脱氧核糖核苷三磷酸(dNTPs)以及KF-聚合酶后, 引物片段发生延伸反应, 将与模板DNA链杂交的AuNPs-DNA竞争下来, 带走大量的RuHex, 使电信号降低, 从而实现对聚合酶的检测. 实验结果表明, 利用该方法可以检测到5 U/mL的KF-.  相似文献   

13.
刘佳  张卫  汤燕  江凌  田丹碧  胡燚 《分析化学》2015,43(4):484-489
以巯基乙酸甲酯(MT)修饰的纳米金(AuNPs)为探针,构建了比色生物传感器检测脂肪酶活性.在pH 6.5弱酸性条件下,脂肪酶水解MT-AuNPs上的酯键生成带负电荷的羧酸根;在pH 3.0的酸性条件下,探针间会产生强烈的氢键作用使AuNPs聚集,基于此可以检测脂肪酶活性.考察了温度、pH等因素对传感器响应信号的影响.MT-AuNPs溶液在650和520 nm处的吸光度比值A650/A520与脂肪酶活性大小在3.0×10-4 ~4.5 ×10-2 U/mL范围内呈现良好的线性关系,检出限为2.25×10-4 U/mL(S/N=3).测定了5种商品化脂肪酶的活性,实验结果与恒电位滴定法测定结果一致,证明本方法具有良好的实用性.  相似文献   

14.
《Electroanalysis》2005,17(14):1325-1330
Interference by Cu(II) causes serious problems in the detection of As(III) using anodic stripping voltammetry at gold electrodes. The behavior of Cu(II) and As(III) were examined at both a gold macro electrode and two kinds of gold nanoparticle modified electrodes, one where gold particles are deposited on glassy carbon (GC) and the other where basal plane pyrolytic graphite (BPPG) is the substrate. The sensitivity of As(III) detection was higher on gold nanoparticle modified electrodes than those on a macro gold electrode by up to an order of magnitude. In addition, the stripping peak of As(III) was narrower and more symmetric on a gold nanoparticle‐modified GC electrode, leading to analytical data with a lower limit of detection. At a macro gold electrode, the peak currents of Cu(II) were higher than those on gold nanoparticle modified electrodes. Accordingly, through the use of gold nanoparticle modified electrodes, the effect of copper interference to the arsenic detection can be reduced.  相似文献   

15.
《Analytical letters》2012,45(12):1604-1616
In this paper, a novel amperometric immunosensor for the determination of carbofuran based on gold nanoparticles (GNPs), magnetic Fe3O4 nanoparticles-functionalized multiwalled carbon nanotubes-chitosan (Fe3O4-FCNTs-CS), and bovine serum albumin (BSA) composite film was proposed. First, GNPs were immobilized onto the glassy carbon electrode (GCE) surface, and then the magnetic Fe3O4 nanoparticles mixed with chitosan-functionalized multiwall carbon nanotubes (CS-FCNTs) homogeneous composite (CS-FCNTs-Fe3O4) was immobilized onto the GNPs layer by electrostatic interactions between amino groups of CS and GNPs. Because chitosan (CS) contains many amino groups, it can absorb more antibodies. FCNTs have high surface area, high electrical conductivity, and it can enhance the electron transfer rate; Magnetite (Fe3O4) nanoparticles can provide a favorable microenvironment for biomolecules immobilization due to their good biocompatibility, strong superparamagnetic property, and low toxicity; and GNPs possess high surface-to-volume reaction, stability, and high conductivity. Gold Nanoparticles/Fe3O4-FCNTs-CS composite film was constructed onto the GCE surface, which had significant synergistic effects toward immunoreaction signal amplification. The stepwise assembly process was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. Under the optimal conditions, the current response was proportional to the concentration of carbofuran ranging from 1.0 ng/mL to 100.0 ng/mL and from 100.0 ng/mL to 200 µg/mL with the detection limit 0.032 ng/mL. The proposed immunosensor exhibited good accuracy, high sensitivity, and stability, and it can be used for detection of carbofuran pesticide.  相似文献   

16.
本文采用紫外光谱(UV/VIS)、荧光光谱和圆二色谱等方法,对汞(II)与牛血红蛋白(BHb)的相互作用进行了研究。结果表明:Hg2 处理导致BHb紫外吸收的增加,出现LMCT带,并随Hg2 浓度的增加LMCT带强度显著增强。BHb分子中Soret带的吸收随着Hg2 作用时间的增加而持续降低,表明Hg2 使部分血红素辅基从BHb中脱离出来。蛋白内源荧光光谱显示,Hg2 与BHb的结合会影响蛋白质的三级结构和四级结构。远紫外圆二色谱表明,Hg2 处理会导致BHb蛋白的α-螺旋含量减少。  相似文献   

17.
A highly sensitive square‐wave voltammetric thrombin (TB) aptamer sensor was developed using functional polydopamine (PD) film by doping and depositing gold nanoparticles into the bulk and the surface of PD. The aptamer sensor was fabricated by immobilizing a thiolated TB‐binding aptamer (TBA) on the AuNPs‐doped/deposited PD film. AuNPs‐supported methylene blue labels were used for the detection of human α‐TB. Under the optimized conditions, the aptamer sensor’s dynamic range and the detection limit were determined to be 2.0 pM–50 nM and 0.97±0.06 pM, respectively. Finally, the proposed aptamer sensor was successfully examined in human serum samples and satisfactory results were obtained.  相似文献   

18.
在本文中,我们研制了一种基于T-T碱基错配特异性键合汞离子的荧光传感器用于汞离子的检测。该传感器由两条分别标记了荧光基团(F)和淬灭基团(Q)的DNA探针组成,并且含有两对用于结合汞离子的T-T错配碱基。当汞离子存在时,两条探针之间形成T-Hg2+-T结构,作用力增强,从而拉近了荧光基团与淬灭基团之间的距离,发生能量转移,使荧光信号在一定程度上被淬灭。在优化的条件下,我们使用该传感器对汞离子进行检测,动力学响应范围为50nM到1000nM,线性相关方程为y= 5281.13 - 1650.56 lg[Hg2+] ( R2 = 0.985),检测下限为79nM。此外,我们还考察了该传感器的选择性,当用其它干扰离子(浓度都为1.0µM)代替待测离子进行实验时,没有发生明显的荧光淬灭,说明该传感器具有较高的选择性。该传感器的构建为汞离子的检测提供了一条快速、简便的新途径。  相似文献   

19.
A novel electrogenerated chemiluminescence (ECL) sensor based on Ru(bpy)32+‐doped titania (RuDT) nanoparticles dispersed in a perfluorosulfonated ionomer (Nafion) on a glassy carbon electrode (GCE) was developed in this paper. The electroactive component‐Ru(bpy)32+ was entrapped within the titania nanoparticles by the inverse microemulsion polymerization process that produced spherical sensors in the size region of 38±3 nm. The RuDT nanoparticles were characterized by electrochemical, transmission electron and scanning microscopy technology. The Ru(bpy)32+ encapsulation interior of the titania nanoparticles maintains its ECL efficiency and also reduces Ru(bpy)32+ leaching from the titania matrix when immersed in water due to the electrostatic interaction. This is the first attempt to prepare the RuDT nanoparticles and extend the application of electroactive component‐doped nanoparticles into the field of ECL. Since a large amount of Ru(bpy)32+ was immobilized three‐dimensionally on the electrode, the Ru(bpy)32+ ECL signal could be enhanced greatly, which finally resulted in the increased sensitivity. The ECL analytical performance of this ECL sensor for tripropylamine (TPA) was investigated in detail. This sensor shows a detection limit of 1 nmol/L for TPA. Furthermore, the present ECL sensor displays outstanding long‐term stability.  相似文献   

20.
《Analytical letters》2012,45(6):912-922
An amine-Fe3O4 modified glassy carbon (GC) electrode was constructed for detecting Pb(II) ions in wastewater. The electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Square wave anodic stripping voltammetry (SWASV) was used to detect the Pb(II), and the detection limit of Pb(II) was 0.15 µM. The sensitivity of the electrode to detect Pb(II) was about 10.07 µA/µM, with a correlation coefficient of 0.991, which was approximately 10 times bigger than that of a pure Fe3O4 modified electrode. The electrode also showed good selectivity and stability. This results indicated that the amine-magnetite material could have some potential applications in heavy metal ions detection in wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号