首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective monofunctionalization of substrates with distant, yet equally reactive functional groups is difficult to achieve, as it requires the second functional group to selectively modulate its reactivity once the first functional group has reacted. We now show that mechanically interlocked catalytic rings can effectively regulate the reactivity of stoppering groups in rotaxanes over a distance of about 2 nm. Our mechanism of communication is enabled by a unique interlocked design, which effectively removes the catalytic rings from the substrates by fast dethreading as soon as the first reaction has taken place. Our method not only led to a rare example of selective monofunctionalization, but also to a “molecular if function”. Overall, the study presents a way to get distant functional groups to communicate with each other in a reaction-history-dependent manner by creating linkers that can ultimately perform logical operations at the molecular level.  相似文献   

2.
Towards polythiophene polyrotaxanes : The β‐substituted terthiophene [2]rotaxanes have been synthesized (see figure). Basic optical and electrochemical properties of the synthesized [2]rotaxanes are also reported.

  相似文献   


3.
Rotaxane building blocks bearing 3,5-bis(trifluoromethyl) benzenesulfonate (BTBS) stoppers have been efficiently prepared from a pillar[5]arene derivative, 3,5-bis(trifluoromethyl) benzenesulfonyl chloride (BTBSCl) and different diols, namely 1,10-decanediol and 1,12-dodecanediol. The BTBS moieties of these compounds are good leaving groups and stopper exchange reactions could be achieved by treatment with different nucleophiles thus affording rotaxanes with ester, thioether or ether stoppers.  相似文献   

4.
Stable pillar[5]arene-containing [2]rotaxane building blocks with pentafluorophenyl ester stoppers have been efficiently prepared on a multi-gram scale. Reaction of these building blocks with various nucleophiles gave access to a wide range of [2]rotaxanes with amide, ester or thioester stoppers in good to excellent yields. The rotaxane structure is fully preserved during these chemical transformations. Actually, the addition-elimination mechanism at work during these transformations totally prevents the unthreading of the axle moiety of the mechanically interlocked system. The stopper exchange reactions were optimized both in solution and under mechanochemical solvent-free conditions. While amide formation is more efficient in solution, the solvent-free conditions are more powerful for the transesterification reactions. Starting from a fullerene-functionalized pillar[5]arene derivative, this new strategy gave easy access to a photoactive [2]rotaxane incorporating a C60 moiety and two Bodipy stoppers. Despite the absence of covalent connectivity between the Bodipy and the fullerene moieties in this photoactive molecular device, efficient through-space excited state interactions have been evidenced in this rotaxane.  相似文献   

5.
6.
Herein, we report a “threading followed by shrinking” approach for the synthesis of rotaxanes by using an “oxygen‐deficient” macrocycle that contained two arylmethyl sulfone units and the dumbbell‐shaped salt bis(3,5‐dimethylbenzyl)ammonium tetrakis(3,5‐trifluoromethylphenyl)borate as the host and guest components, respectively. The extrusion of SO2 from both of the arylmethyl sulfone units of the macrocyclic component in the corresponding [2]pseudorotaxane resulted in a [2]rotaxane that was sufficiently stable to maintain its molecular integrity in CD3SOCD3 at 393 K for at least 5 h.  相似文献   

7.
A CoII/porphyrinate‐based macrocycle in the presence of a 3,5‐diphenylpyridine axial ligand functions as an endotopic ligand to direct the assembly of [2]rotaxanes from diazo and styrene half‐threads, by radical‐carbene‐transfer reactions, in excellent 95 % yield. The method reported herein applies the active‐metal‐template strategy to include radical‐type activation of ligands by the metal‐template ion during the organometallic process which ultimately yields the mechanical bond. A careful quantitative analysis of the product distribution afforded from the rotaxane self‐assembly reaction shows that the CoII/porphyrinate subunit is still active after formation of the mechanical bond and, upon coordination of an additional diazo half‐thread derivative, promotes a novel intercomponent C?H insertion reaction to yield a new rotaxane‐like species. This unexpected intercomponent C?H insertion illustrates the distinct reactivity brought to the CoII/porphyrinate catalyst by the mechanical bond.  相似文献   

8.
The photothermal effect is the generation of heat by molecules or particles upon high‐energy laser irradiation, and near‐infrared absorbers such as gold nanoparticles and organic dyes have a range of potential photothermal applications. The favourable photothermal properties of thiophene‐functionalised croconaine dyes were recently discovered. The synthesis and properties of novel croconaine rotaxane and pseudorotaxane architectures capable of efficient photothermal performance in both organic and aqueous environments are reported. The versatility of this dye‐encapsulation strategy was demonstrated by the preparation of two organic croconaine rotaxanes using different synthetic methods: the formation of an aqueous pseudorotaxane association complex, and the synthesis of water‐soluble, croconaine‐doped silicated micelle nanoparticles. All of these near‐infrared‐absorbing systems exhibit excellent photothermal behaviour, with pseudorotaxane and rotaxane formation vital for effective aqueous heat generation. Dye encapsulation provides steric protection to enhance the stability of a water‐sensitive croconaine dye, while rotaxane‐doped nanoparticles avoid detrimental band broadening caused by chromophore coupling.  相似文献   

9.
Imine‐bridged rotaxanes are a new type of rotaxane in which the axle and macrocyclic ring are connected by imine bonds. We have previously reported that in imine‐bridged rotaxane 5 , the shuttling motion of the macrocycle could be controlled by changing the temperature. In this study, we investigated how the axle and macrocycle structures affect the construction of the imine‐bridged rotaxane as well as the dynamic equilibrium between imine‐bridged rotaxane 5 and [2]rotaxane 7 by using various combinations of axles ( 1 A , B ), macrocycles ( 2 a – e ), and side‐stations (XYL and TEG). In the threading process, the flexibility of the macrocycle and the substituent groups at the para position of the aniline moieties affect the preparation of the threaded imines. The size of the imine‐bridging station and the macrocyclic tether affects the hydrolysis of the imine bonds under acidic conditions.  相似文献   

10.
Two Janus [2]rotaxanes, 5a and 5b , with α‐cyclodextrin (α‐CD) derivatives substituted on the 6‐position with two recognition sites (azobenzene and heptamethylene (C7)) that were linked with linkers of different lengths (oligo(ethylene glycol) with a degree of polymerization equal to 2 or approximately 21) were synthesized and characterized. 2D ROESY NMR spectroscopy and circular dichroism (cd) spectra demonstrated that the recognition site of the α‐CD moiety was switched by photoisomerization of the azobenzene moiety in 5a and 5b . The different size changes of 5a and 5b in hydrodynamic radius (RH) owing to the different length of linker between two recognition sites were observed by pulse‐field‐gradient spin‐echo NMR spectroscopy. The kinetic results indicated that the different length of linker had no or a weak effect for the photoisomerization process of 5a and 5b .  相似文献   

11.
A [2]rotaxane was produced through the assembly of a picolinaldehyde, an amine, and a bipyridine macrocycle around a CuI template by imine bond formation in close‐to‐quantitative yield. An analogous [3]rotaxane is obtained in excellent yield by replacing the amine with a diamine, thus showing the suitability of the system for the construction of higher order interlocked structures. The rotaxanes are formed within a few minutes simply through mixing the components in solution at room temperature and they can be isolated through removal of the solvent or precipitation.  相似文献   

12.
13.
A new, versatile chloride-anion-templating synthetic pathway is exploited for the preparation of a series of eight new [2]rotaxane host molecules, including the first sulfonamide interlocked system. (1)H NMR spectroscopic titration investigations demonstrate the rotaxanes' capability to selectively recognise the chloride anion in competitive aqueous solvent media. The interlocked host's halide binding affinity can be further enhanced and tuned through the attachment of electron-withdrawing substituents and by increasing its positive charge. A dicationic rotaxane selectively binds chloride in 35% water, wherein no evidence of oxoanion binding is observed. NMR spectroscopy, X-ray structural analysis and computational molecular dynamics simulations are used to account for rotaxane formation yields, anion binding strengths and selectivity trends.  相似文献   

14.
Bromide is best : The first [2]rotaxane incorporating the triazolium anion‐binding motif is prepared using bromide anion templation. Preliminary anion‐binding investigations reveal that the rotaxane exhibits the rare selectivity preference for bromide over chloride ions.

  相似文献   


15.
The synthesis and anion binding properties of the first rotaxane host system to bind and sense anions purely through halogen bonding, is described. Through a combination of polarized iodotriazole and iodotriazolium halogen bond donors, a three‐dimensional cavity is created for anion binding. This rotaxane incorporates a luminescent rhenium(I) bipyridyl metal sensor motif within the macrocycle component, thus enabling optical study of the anion binding properties. The rotaxane topology was confirmed by single‐crystal X‐ray structural analysis, demonstrating halogen bonding between the electrophilic iodine atoms and chloride anions. In 50 % H2O/CH3CN solvent mixtures the rotaxane host exhibits strong binding affinity and selectivity for chloride, bromide, and iodide over a range of oxoanions.  相似文献   

16.
17.
Amphiphilic pillar[5]arene‐containing [2]rotaxanes have been prepared and fully characterized. In the particular case of the [2]rotaxane incorporating a 1,4‐diethoxypillar[5]arene subunit, the structure of the compound was confirmed by X‐ray crystal structure analysis. Owing to a good hydrophilic/hydrophobic balance, stable Langmuir films have been obtained for these rotaxanes and the size of the peripheral alkyl chains on the pillar[5]arene subunit has a dramatic influence on the reversibility during compression–decompression cycles. Indeed, when these are small enough, molecular reorganization of the rotaxane by gliding motions are capable of preventing strong π–π interactions between neighboring macrocycles in the thin film.  相似文献   

18.
The chloride‐templated synthesis of a novel [3]rotaxane, capable of binding anionic guests, and incorporating a naphthalene group for fluorescence sensing is reported. Extensive 1H NMR titration studies were used to probe the anion binding selectivity of the system. The rotaxane selectively recognises sulfate, undergoing an induced conformational change upon sulfate binding to form a 1:1 stoichiometric sandwich‐type complex, concomitant with significant quenching of the fluorescence. Binding of mono‐anionic guests results in the formation of a 2:1 stoichiometric guest–host complex, and a modest enhancement of the emission. Addition of an excess of sulfate in non‐competitive solvent also results in a 2:1 emissive complex.  相似文献   

19.
α‐Cyclodextrin (CD)‐based size‐complementary [3]rotaxanes with alkylene axles were prepared in one‐pot by end‐capping reactions with aryl isocyanates in water. The selective formation of [3]rotaxane with a head‐to‐head regularity was indicated by the X‐ray structural analyses. Thermal degradation of the [3]rotaxanes bearing appropriate end groups proceeded by stepwise dissociation to yield not only the original components but also [2]rotaxanes. From the kinetic profiles of the deslippage, it turned out that the maximum yield of [2]rotaxane was estimated to be 94 %. Thermodynamic studies and NOESY analyses of such rotaxanes revealed that [2]rotaxanes are specially stabilized, and that the dissociation capability of the [3]rotaxanes to the components can be adjusted by controlling the structure of the end groups, direction of the CD groups, and length of the alkylene axle.  相似文献   

20.
We present the first [2]rotaxane featuring a functional organometallic host. In contrast to the known organic scaffolds, this assembly shows a high post‐synthetic modifiability. The reactivity of the Ag8 pillarplex host is fully retained, as is exemplified by the first transmetalation in a rotaxane framework to provide the respective Au8 analogue. Additionally, a transformation under acidic conditions to give a purely organic [3]rotaxane is demonstrated which is reversible upon addition of a suitable base, rendering the assembly a pH‐dependent switch. Hereby, it is shown that the mechanically interlocked nature of the system enhances the kinetic stability of the NHC host complex by a factor of >1000 and corresponds to the first observation of a stabilizing “rotaxand effect”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号