首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The complete reductive cleavage of the triple bond in carbon monoxide was achieved using a lithium disilenide at room temperature. The C? C‐coupled product can be regarded as a silanone dimer with pending alkyne and silirene moieties and incorporates two equivalents of CO per disilenide unit. A formation mechanism via ketenyl intermediates is proposed on the basis of DFT calculations and elucidated experimentally by employing Group 6 metal carbonyls as both stabilizing entity and source of CO in the reaction with disilenide. The isolation of cyclic silylene complexes with weakly donating ketenyl donor groups further supports the mechanistic scenario.  相似文献   

3.
A cobalt‐catalyzed chelation‐assisted tandem C?H activation/C?C cleavage/C?H cyclization of aromatic amides with alkylidenecyclopropanes is reported. This process allows the sequential formation of two C?C bonds, which is in sharp contrast to previous reports on using rhodium catalysts for the formation of C?N bonds. Here the inexpensive catalyst system exhibits good functional‐group compatibility and relatively broad substrate scope. The desired products can be easily transformed into polycyclic lactones with m‐CPBA. Mechanistic studies revealed that the tandem reaction proceeds through a C?H cobaltation, β‐carbon elimination, and intramolecular C?H cobaltation sequence.  相似文献   

4.
The increasing pharmaceutical importance of trifluoromethylarenes has stimulated the development of more efficient trifluoromethylation reactions. Tremendous efforts have focused on copper‐ and palladium‐mediated/catalyzed trifluoromethylation of aryl halides. In contrast, no general method exists for the conversion of widely available inert electrophiles, such as phenol derivatives, into the corresponding trifluoromethylated arenes. Reported herein is a practical nickel‐mediated trifluoromethylation of phenol derivatives with readily available trimethyl(trifluoromethyl)silane (TMSCF3). The strategy relies on PMe3‐promoted oxidative addition and transmetalation, and CCl3CN‐induced reductive elimination. The broad utility of this transformation has been demonstrated through the direct incorporation of trifluoromethyl into aromatic and heteroaromatic systems, including biorelevant compounds.  相似文献   

5.
The rhodium(I)‐catalyzed C?C bond activation reaction of siloxyvinylcyclopropanes with diazoesters demonstrates a novel mode of C?C bond cleavage of siloxyvinvylcyclopanes. The alkene products were obtained as single E‐configured isomers in good yields. A σ,η3‐allyl rhodium complex, which has been previously proposed as the key intermediate in rhodium(I)‐catalyzed cycloaddition of vinylcyclopropanes, has been isolated and characterized by X‐ray crystallography.  相似文献   

6.
The reaction of highly Lewis acidic tetra(o‐tolyl)diborane(4) with CO afforded a mixture of boraindane and boroxine by the cleavage of the C≡O triple bond. 13C labeling experiments confirmed that the carbon atom in the boraindane stems from CO. Simultaneously, formation of boroxine 3 could be considered as borylene transfer to capture the oxygen atom from CO. The reaction of diborane(4) with tBu?NC afforded an azaallene, while the reaction with Xyl?NC furnished cyclic compounds by direct C?H borylations.  相似文献   

7.
The monomeric aluminium hydrazide H10C5N? N(AltBu2)? Ad ( 4 ; Ad=adamantyl, NC5H10=piperidinyl) was obtained in high yield by hydroalumination of the corresponding hydrazone derivative 1 . Compound 4 has a strained AlN2 heterocycle formed by a donor–acceptor bond between the β‐nitrogen atom of the hydrazide group and the aluminium atom. Opening of this bond resulted in the formation of an active Lewis pair that was able to cooperatively activate carbon dioxide or isocyanates. Insertion of the heterocumulenes into the Al? N bond selectively afforded a carbamate and two urea derivatives in high yield. In the first step, phenyl isocyanate gave the adduct 6 , which has the oxygen atom coordinated to the aluminium atom and its central carbon atom bound to the nitrogen atom of the piperidine moiety. Adduct 6 represents a reasonable intermediate state for these activation processes. The applicability of hydroaluminated compounds, such as 4 , in organic synthesis was demonstrated by the reaction with an imidoyl chloride, which gave the corresponding amidrazone derivative 9 .  相似文献   

8.
A photoinduced cascade strategy leading to a variety of differentially functionalised nitriles and ketones has been developed. These reactions rely on the oxidative generation of iminyl radicals from simple oximes. Radical transposition by C(sp3)−(sp3) and C(sp3)−H bond cleavage gives access to distal carbon radicals that undergo SH2 functionalisations. These mild, visible‐light‐mediated procedures can be used for remote fluorination, chlorination, and azidation, and were applied to the modification of bioactive and structurally complex molecules.  相似文献   

9.
The amide bond N?C activation represents a powerful strategy in organic synthesis to functionalize the historically inert amide linkage. This personal account highlights recent remarkable advances in transition‐metal‐free activation of amides by N?C bond cleavage, focusing on both (1) mechanistic aspects of ground‐state‐destabilization of the amide bond enabling formation of tetrahedral intermediates directly from amides with unprecedented selectivity, and (2) synthetic utility of the developed transformations. Direct nucleophilic addition to amides enables a myriad of powerful methods for the formation of C?C, C?N, C?O and C?S bonds, providing a straightforward and more synthetically useful alternative to acyl‐metals.  相似文献   

10.
《化学:亚洲杂志》2017,12(2):239-247
Five bis(quinolylmethyl)‐(1H ‐indolylmethyl)amine (BQIA) compounds, that is, {(quinol‐8‐yl‐CH2)2NCH2(3‐Br‐1H ‐indol‐2‐yl)} ( L1H ) and {[(8‐R3‐quinol‐2‐yl)CH2]2NCH(R2)[3‐R1‐1H ‐indol‐2‐yl]} ( L2–5H ) ( L2H : R1=Br, R2=H, R3=H; L3H : R1=Br, R2=H, R3=i Pr; L4H : R1=H, R2=CH3, R3=i Pr; L5H : R1=H, R2=n Bu, R3=i Pr) were synthesized and used to prepare calcium complexes. The reactions of L1–5H with silylamido calcium precursors (Ca[N(SiMe2R)2]2(THF)2, R=Me or H) at room temperature gave heteroleptic products ( L1, 2 )CaN(SiMe3)2 ( 1 , 2 ), ( L3, 4 )CaN(SiHMe2)2 ( 3 a , 4 a ) and homoleptic complexes ( L3, 5 )2Ca ( D3 , D5 ). NMR and X‐ray analyses proved that these calcium complexes were stabilized through Ca⋅⋅⋅C−Si, Ca⋅⋅⋅H−Si or Ca⋅⋅⋅H−C agostic interactions. Unexpectedly, calcium complexes (( L3–5 )CaN(SiMe3)2) bearing more sterically encumbered ligands of the same type were extremely unstable and underwent C−N bond cleavage processes as a consequence of intramolecular C−H bond activation, leading to the exclusive formation of (E )‐1,2‐bis(8‐isopropylquinol‐2‐yl)ethane.  相似文献   

11.
Metal‐catalyzed cross‐coupling reactions belong to the most important transformations in organic synthesis. Copper catalysis has received great attention owing to the low toxicity and low cost of copper. However, traditional Ullmann‐type couplings suffer from limited substrate scopes and harsh reaction conditions. The introduction of several bidentate ligands, such as amino acids, diamines, 1,3‐diketones, and oxalic diamides, over the past two decades has totally changed this situation as these ligands enable the copper‐catalyzed coupling of aryl halides and nucleophiles at both low reaction temperatures and catalyst loadings. The reaction scope has also been greatly expanded, rendering this copper‐based cross‐coupling attractive for both academia and industry. In this Review, we have summarized the latest progress in the development of useful reaction conditions for the coupling of (hetero)aryl halides with different nucleophiles. Additionally, recent advances in copper‐catalyzed coupling reactions with aryl boronates and the copper‐based trifluoromethylation of aromatic electrophiles will be discussed.  相似文献   

12.
The coupling of aromatic electrophiles (aryl halides, aryl ethers, aryl acids, aryl nitriles etc.) with nucleophiles is a core methodology for the synthesis of aryl compounds. Transformations of aryl ketones in an analogous manner via carbon–carbon bond activation could greatly expand the toolbox for the synthesis of aryl compounds due to the abundance of aryl ketones. An exploratory study of this approach is typically based on carbon–carbon cleavage triggered by ring‐strain release and chelation assistance, and the products are also limited to a specific structural motif. Here we report a ligand‐promoted β‐carbon elimination strategy to activate the carbon–carbon bonds, which results in a range of transformations of aryl ketones, leading to useful aryl borates, and also to biaryls, aryl nitriles, and aryl alkenes. The use of a pyridine‐oxazoline ligand is crucial for this catalytic transformation. A gram‐scale borylation reaction of an aryl ketone via a simple one‐pot operation is reported. The potential utility of this strategy is also demonstrated by the late‐stage diversification of drug molecules probenecid, adapalene, and desoxyestrone, the fragrance tonalid as well as the natural product apocynin.  相似文献   

13.
The silver‐catalyzed oxidative C(sp3)−H/P−H cross‐coupling of 1,3‐dicarbonyl compounds with H‐phosphonates, followed by a chemo‐ and regioselective C(sp3)−C(CO) bond‐cleavage step, provided heavily functionalized β‐ketophosphonates. This novel method based on a readily available reaction system exhibits wide scope, high functional‐group tolerance, and exclusive selectivity.  相似文献   

14.
Dioxygen activation for effective C?O bond formation in the coordination sphere of a metal is a long‐standing challenge in chemistry for which the design of catalysts for oxygenations is slowed down by the complicated, and sometimes poorly understood, mechanistic panorama. In this context, olefin–peroxide complexes could be valuable models for the study of such reactions. Herein, we showcase the isolation of rare “Ir(cod)(peroxide)” complexes (cod=1,5‐cyclooctadiene) from reactions with oxygen, and then the activation of the peroxide ligand for O?O bond cleavage and C?O bond formation by transfer of a hydrogen atom through proton transfer/electron transfer reactions to give 2‐iradaoxetane complexes and water. 2,4,6‐Trimethylphenol, 1,4‐hydroquinone, and 1,4‐cyclohexadiene were used as hydrogen atom donors. These reactions can be key steps in the oxy‐functionalization of olefins with oxygen, and they constitute a novel mechanistic pathway for iridium, whose full reaction profile is supported by DFT calculations.  相似文献   

15.
A rhodium‐catalyzed intramolecular acetyl‐group transfer has been achieved through a “cut and sew” process. The challenge arises from the existence of different competitive pathways. Preliminary success has been achieved with unstrained enones that contain a biaryl linker. The use of an electron‐rich N‐heterocycilc carbene (NHC) ligand is effective to inhibit undesired β‐hydrogen elimination. Various 9,10‐dihydrophenanthrene derivatives can be prepared with excellent functional‐group compatibility. The 13C‐labelling study suggests that the reaction begins with cleavage of the unstrained C?C bond, followed by migratory insertion and reductive elimination.  相似文献   

16.
We describe a simple way to build giant macrocyclic hydrocarbons by the reversible formation of carbon–carbon bonds. Specifically, extended spirobifluorene‐substituted derivatives of Wittig's hydrocarbon were synthesized and found to undergo oligomerization, giving the largest hydrocarbon that has been crystallized and characterized by X‐ray diffraction to date.  相似文献   

17.
The high catalytic reactivity of homoleptic tris(alkyl) lanthanum La{C(SiHMe2)3}3 is highlighted by C?O bond cleavage in the hydroboration of esters and epoxides at room temperature. The catalytic hydroboration tolerates functionality typically susceptible to insertion, reduction, or cleavage reactions. Turnover numbers (TON) up to 10 000 are observed for aliphatic esters. Lanthanum hydrides, generated by reactions with pinacolborane, are competent for reduction of ketones but are inert toward esters. Instead, catalytic reduction of esters requires activation of the lanthanum hydride by pinacolborane.  相似文献   

18.
The electronically unsaturated dirhenium complex [Re2(CO)8(μ‐H)(μ‐Ph)] ( 1 ) has been found to exhibit aromatic C?H activation upon reaction with N,N‐diethylaniline, naphthalene, and even [D6]benzene to yield the compounds [Re2(CO)8(μ‐H)(μ‐η1‐NEt2C6H4)] ( 2 ), [Re2(CO)8(μ‐H)(μ‐η2‐1,2‐C10H7)] ( 3 ), and [D6]‐ 1 , respectively, in good yields. The mechanism has been elucidated by using DFT computational analyses, and involves a binuclear C?H bond‐activation process.  相似文献   

19.
The Ru catalyzed cross‐dehydrogenative C?O bond formation between anilines and phenols is described and discussed. The exclusive C?O versus C?N bond‐formation selectivity, moreover in the absence of chelating–assisting directing groups and while leaving the N?H position untouched, is a remarkable feature of this metal‐catalyzed radical cross‐dehydrogenative coupling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号