首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 88 毫秒
1.
This paper describes a rapid and sensitive method for determination of the hair dye Basic Blue 41 in wastewater samples using screen‐printed carbon electrodes modified with graphene (SPCE/Gr). The method is based on the reversible reduction of azo groups of the dye at potential of ?0.23 V/?0.26 V, where both the anodic and cathodic currents increased 1,300 % when compared to screen‐printed carbon (SPCE) and glassy carbon electrodes (GCE). The optimization of a square wave voltammetric method was performed by means of 23 factorial design, Doehlert matrix and multi‐response assays, and the best parameters were: frequency (54.8 Hz), step potential (6 mV), pulse amplitude (43.7 mV) and pH 4.5. The analytical curve was constructed from 3.00×10?8 to 2.01×10?6 mol L?1, with detection and quantification limits of 5.00×10?9 and 1.70×10?8 mol L?1, respectively. The repeatability of the method evaluated for 10 consecutive measurements at concentrations of 1.70×10?7 mol L?1 and 1.70×10?6 mol L?1, showed relative standard deviation of 3.56 and 0.57 %, respectively. The sensor based in SPCE/Gr was successfully applied in wastewater samples collected from a drinking water treatment plant and validated by comparison with HPLC‐DAD method with good accuracy.  相似文献   

2.
The electrochemical response of a modified-carbon nanotubes paste electrode with p-aminophenol was investigated as an electrochemical sensor for sulfite determination. The electrochemical behaviour of sulfite was studied at the surface of the modified electrode in aqueous media using cyclic voltammetry and square wave voltammetry. It has been found that under the optimum condition (pH 7.0) in cyclic voltammetry, the oxidation of sulfite occurs at a potential about 680?mV less positive than that of an unmodified-carbon nanotubes paste electrode. Under the optimized conditions, the electrocatalytic peak current showed linear relationship with sulfite concentration in the range of 2.0?×?10?7–2.8?×?10?4?mol?L?1 with a detection limit of 9.0?×?10?8?mol?L?1 sulfite. The relative standard deviations for ten successive assays of 1.0 and 50.0?µmol?L?1 sulfite were 2.5% and 2.1%, respectively. Finally, the modified electrode was examined as a selective, simple and precise new electrochemical sensor for the determination of sulfite in water and wastewater samples.  相似文献   

3.
The formation of an inclusion complex of the proton‐pump inhibitor (PPI) drug esomeprazole (ESO) with ß‐cyclodextrin (ß‐CD) has been investigated and proven by cyclic voltammetry (CV). The formation constant of the complex was determined. Thereafter, an electropolymerized β‐CD and L‐arginine (L‐arg) modified screen printed carbon electrode (P‐β‐CD‐L‐arg/SPCE) was developed for the determination of ESO using differential pulse adsorptive stripping voltammetry (DPAdSV). A significant enhancement of the peak current was observed when applying an accumulation step due to the effect of adsorption. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) further indicated that the polymer of β‐CD and L‐arg efficiently improved the electron transfer kinetic between analyte and electrode surface. Under the optimized conditions, the oxidation peak current was linearly proportional to the concentration of the drug in the range of 1.0×10?8 to 1.0×10?5 M. The DPAdSV method was successfully used to determine the concentrations of the drug in spiked human serum samples.  相似文献   

4.
Double‐stranded DNA and multiwalled carbon nanotube (MWNT) complex modified glassy carbon electrodes (DNA‐MWNT‐GCE) were employed to discriminate penicillamine (PA) enantiomers. Cyclic voltammetry, electrochemical impedance spectroscopy, atomic force microscopy and ultraviolet‐visible spectroscopy were used to characterize the enantioselective phenomenon. The results indicated that the binding effect between L ‐PA and DNA‐MWNTs was stronger than that of D ‐PA and DNA‐MWNTs. In addition, the influencing factors of the modified electrodes were systematically investigated. The modified electrodes exhibited a linear response towards PA enantiomers from 1.0×10?1 to 1.0×10?8 mol L?1 and detection limits of 3.1×10?9 and 3.3×10?8 mol L?1 for L ‐PA and D ‐PA, respectively.  相似文献   

5.
A modified glassy carbon electrode was prepared as an electrochemical voltammetric sensor based on molecularly imprinted polymer film for tartrazine (TT) detection. The sensitive film was prepared by copolymerization of tartrazine and acrylamide on the carbon nanotube-modified glassy carbon electrode. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. Under the optimum conditions, two dynamic linear ranges of 8?×?10?8 to 1?×?10?6?mol?L?1 and 1?×?10?6 to 1?×?10?5?mol?L?1 were obtained, with a detection limit of 2.74?×?10?8?mol?L?1(S/N?=?3). This sensor was used successfully for tartrazine determination in beverages.  相似文献   

6.
A new analytical methodology for the electrochemical detection of the herbicide maleic hydrazide (3,6‐dihydroxypyridazine) by flow injection analysis is presented. This method is supported by the novel application of a palladium‐dispersed carbon paste electrode as an amperometric sensor for this herbicide. Maleic hydrazide shows anodic electrochemical activity on carbon‐based electrodes (glassy carbon or carbon paste electrodes) in all the pH range. This electrochemical activity is enhanced using metal‐dispersed carbon paste electrodes, especially at Pd‐dispersed CPE which displays good oxidation signals at 690 mV (0.050 M phosphate buffer pH 7.0), 140 mV lower than at unmodified electrodes. Under the optimized conditions, the electroanalytical performance of Pd‐dispersed CPE in flow injection analysis was excellent, with good reproducibility (RSD 3.3%) and a wide linear range (1.9×10?7 to 1.0×10?4 mol L?1). A detection limit of 1.4×10?8 mol L?1 (0.14 ng maleic hydrazide) was obtained for a sample loop of 100 μL at a fixed potential of 700 mV in 0.050 M phosphate buffer solution at pH 7.0 and a flow rate of 2.0 mL min?1. The proposed method was applied for the maleic hydrazide detection in natural drinking water samples.  相似文献   

7.
A new electrochemical method was proposed for the determination of adenosine‐5′‐triphosphate (ATP) based on the electrooxidation at a molecular wire (MW) modified carbon paste electrode (CPE), which was fabricated with diphenylacetylene (DPA) as the binder. A single well‐defined irreversible oxidation peak of ATP appeared on MW‐CPE with adsorption‐controlled process and enhanced electrochemical response in a pH 3.0 Britton‐Robinson buffer solution, which was due to the presence of high conductive DPA in the electrode. The electrochemical parameters of ATP were calculated with the electron transfer coefficient (α) as 0.54, the electron transfer number (n) as 1.9, the apparent heterogeneous electron transfer rate constant (ks) as 2.67 × 10?5 s?1 and the surface coverage (ΓT) as 4.15 × 10?10 mol cm?2. Under the selected conditions the oxidation peak current was proportional to ATP concentration in the range from 1.0 × 10?7 mol L?1 to 2.0 × 10?3 mol L?1 with the detection limit as 1.28 × 10?8 mol L?1 (3σ) by sensitive differential pulse voltammetry. The proposed method showed good selectivity without the interferences of coexisting substances and was successful applied to the ATP injection samples detection.  相似文献   

8.
We propose an electrochemical sensor based on applying two successive thin layers from a mixture of multiwalled carbon nanotubes‐ionic liquid crystal and crown ether at glassy carbon electrode surface (GC/(CNTs‐ILC)/Crown). The sensor was used for sensitive determination of neurotransmitters based on effective synergism between its components. The compact conducting surface of (CNTs ‐ ILC) with large surface area allowed the assembling of stable host‐guest inclusion complexes between crown ethers and neurotransmitters. The GC/(CNTs‐ILC)/Crown exhibited excellent electro‐catalytic activity toward the determination of serotonin (ST) in a wide linear dynamic range: 0.005 μmol L?1 to 100 μmol L?1. In the concentration range 0.005 μmol L?1 to 1 μmol L?1, the detection limit is 2.03×10?10 mol L?1 and quantification limit is 6.78×10?10 mol L?1 with correlation coefficient 0.999. The sensor was successfully applied for ST detection in human serum samples with satisfied recovery results. The sensor showed excellent analytical performance for the determination of ST in terms of low detection limit, good sensitivity and reproducibility. Furthermore excellent anti‐interference ability and simultaneous determination of ST in presence of other compounds as ascorbic acid, dopamine and antidepressant drug were achieved.  相似文献   

9.
《Electroanalysis》2003,15(22):1751-1755
A sensitive, selective and economic stripping voltammetry is described for the determination of trace amounts of zirconium at a morin‐modified carbon paste electrode (morin‐MCPE). Zirconium(IV) can be preconcentrated on the surface of the morin‐MCPE due to forming the Zr(IV)–morin complex. The complex produces two second‐order derivative anodic peaks at 0.69 V (vs. SCE) and 0.75 V when linear‐scanning from 0.0 to 1.0 V. The optimum analytical conditions are: 2.2 mol L?1 HCl, 0.0 V accummulation potential, 90 s accummulation time, 250 mV s?1 scan rate. A linear relationships between the peak currents at 0.75 V and the Zr(IV) concentration are in the range of 2.0×10?8 to 3.0×10?6 mol L?1. The detection limit is 1.0×10?8 mol L?1 (S/N=3) for 120 s accumulation. The RSD for determination of 4.0×10?7 mol L?1 Zr(IV) is 4.8% (n=8). The proposed method has been applied to determine zirconium in ore samples, unnecessarily extracted.  相似文献   

10.
A new voltammetric procedure for the simultaneous determination of dopamine (DA) and paracetamol (PA) using boron doped diamond electrode modified with Nafion and lead films (PbF/Nafion/BDDE) was investigated. The use of this electrode resolved the overlapped voltammetric waves of DA and PA into well‐defined peaks with peak to peak separation of about 320 mV. Under the optimized experimental conditions in differential pulse voltammetric technique, DA and PA gave a linear response over the ranges 2.0×10?7–1.0×10?4 mol L?1*(R2=0.9996) and 5.0×10?7–1.0×10?3 mol L?1 (R2=0.9979), respectively. The detection limits were found to be 5.4×10?8 mol L?1 for DA and 1.4×10?7 mol L?1 for PA. They are lower, comparable or in some cases a little bit higher than those obtained using other electrochemical sensors. However, the proposed procedure of the sensor preparation is much simpler than procedures described in the literature with a lower detection limit. The proposed procedure was successfully applied to the determination of PA in some commercial pharmaceuticals as well as to the simultaneous determination of DA and PA in human urine, whole blood and serum samples directly without any separation steps.  相似文献   

11.
A sensitive molecularly imprinted electrochemical sensor with specific recognition ability for oleanolic acid was synthesized by modification of multiwalled carbon nanotubes (MWNTs) decorated with tin oxide nanoparticles (nano‐SnO2/MWNTs) and polypyrrole‐imprinted polymer on a carbon electrode. The morphology and electrochemical performance of the imprinted sensor were investigated by using scanning electron microscope (SEM), X‐ray diffraction (XRD), cyclic voltammetry (CV), linear sweep voltammetry (LSV) and amperometric it curve. The results showed that the imprinted sensor displayed excellent selectivity toward oleanolic acid. A linear relationship between the response currents and oleanolic acid concentrations ranging from 5.0×10?8 g/L to 2.0×10?5 g/L was obtained for the imprinted sensor. The limit of detection (LOD) of the imprinted sensor toward oleanolic acid was calculated as 8.6×10?9 g/L at a signal to noise ratio (S/N) of 3. This imprinted sensor was successfully applied to the determination of oleanolic acid in Acitinidia deliciosa root samples.  相似文献   

12.
A novel sensor for detection of trace gallium ion [Ga(III)] was created by stepwise modification of a gold electrode with β‐cyclodextrin (β‐CD)/multi‐walled carbon nanotubes (MWCNTs) and an ion imprinted polymer (IIP). The sensor surface morphology was characterized by scanning electron microscopy. The electrochemical performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The sensor displayed excellent selectivity towards the target Ga(III) ion. Meanwhile, the introduced MWCNTs displayed noticeable catalytic activity, and β‐CD demonstrated significant enrichment capacity. A linear calibration curve was obtained covering the concentration range from 5.0×10?8 to 1.0×10?4 mol·L?1, with a detection limit of 7.6×10?9 mol·L?1. The proposed sensor was successfully applied to detect Ga(III) in real urine samples.  相似文献   

13.
The present work reports for the first time the determination of paraquat (PQ2+) by Differential Pulse Adsorptive Stripping Voltammetry (DPAdSV) using a carbon paste electrode modified (CPME) with biochar obtained from castor oil cake at different temperatures (200–600 °C). The best voltammetric response was verified using biochar yielded at 400 °C (CPME‐BC400). Linear dynamic range (LDR) for PQ2+ concentrations between 3.0×10?8 and 1.0×10?6 mol L?1 and a limit of detection (LOD) of 7.5×10?9 mol L?1 were verified. The method was successfully applied for PQ2+ quantification in spiked samples of natural water and coconut water.  相似文献   

14.
《Electroanalysis》2017,29(3):907-916
A porous electrode material combining the features of vertically aligned multi‐walled carbon nanotubes (VAMWCNT) and diamond‐like carbon films (DLC) have been developed for a highly sensitive electrochemical sensor. For working electrode preparation, DLC has been grown onto VAMWCNT, forming a porous, conductive and stable composite. The electrochemical performance of this DLC:VAMWCNT electrode has been investigated toward detection and analysis of three well‐known molecules, namely paracetamol, codeine and caffeine. A ternary mixture of these analytes was simultaneously determined under optimum experimental conditions using square‐wave voltammetry. Wide linear concentration ranges and the limits of detection of 3.34×10−7 mol L−1, 1.57×10−7 mol L−1 and 3.67×10−7 mol L−1 were obtained for paracetamol, codeine and caffeine, respectively. We conclude that the proposed voltammetric method and the DLC:VAMWCNT electrode comprise a reliable methodology for simultaneous determination of paracetamol, codeine and caffeine in biological matrix samples.  相似文献   

15.
The electrochemical reduction of carbamazepine in acetonitrile (ACN) and dimethylformamide (DMF) using a glassy carbon electrode and microelectrodes has been studied. The reduction process is consistent with an electrochemical‐chemical mechanism (EC) involving a two electron transfer followed by a first order reaction, as shown by the cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Half‐wave potential, number of electron transferred, diffusion coefficient and rate constant of the associated chemical reaction are reported. Limits of detection (LOD) for DPV are 0.92 and 0.76 µg mL?1 (3.89×10?6 mol L?1 and 3.21×10?6 mol L?1) in ACN and DMF, respectively. Precision (%RSD) and recovery (%) values when pharmaceutical compounds (200mg carbamazepine tablets) and spiked plasma samples were tested ranged from 1.09 to 9.04 % and % recoveries ranged from 96 to 104.1 %.  相似文献   

16.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

17.
A sensitive and selective imprinted electrochemical sensor for the determination of oxacillin was developed based on indium tin oxide electrode. The proposed sensor was decorated with imprinted sol–gel film and cobalt nanoparticles‐chitosan/β‐cyclodextrin‐multiwalled carbon nanotubes nanocomposites. The surface morphologies of the modified electrodes were characterized by scanning electron microscopy and transmission electron microscope. The stepwise assembly process and electrochemical behavior of the novel sensor were characterized by differential pulse voltammetry, cyclic voltammetry and Amperometric i‐t response. The imprinted sensor displayed excellent selectivity toward oxacillin. Meanwhile, the introduced cobalt nanoparticles‐chitosan and β‐cyclodextrin‐multi‐walled carbon nanotubes exhibited noticeable amplified electrochemical response signal. The differential voltammetric anodic peak current was linear to oxacillin concentration in the range from 2.0 × 10?7 to 1.0 × 10?4 mol·l?1, and the detection limit was 6.9 × 10?9 mol·l?1. The proposed imprinted sensor was applied to the determination of oxacillin in human blood serum samples successfully. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Two amino acids – d ‐penicillamine (D‐PA) and tryptophan (TRP) – could be simultaneously determined in an aqueous solution (pH 7.0) using a novel benzoylferrocene‐modified carbon nanotube paste electrode. The results indicate that the electrode is efficient in terms of its electrocatalytic activity for the oxidation of D‐PA, leading to an overpotential reduction by more than 155 mV. Using square wave voltammetry, measurement of D‐PA and TRP in one mixture could be done independently from each other with a potential difference of about 205 mV. The proposed electrochemical sensor exhibited a linear calibration plot ranging from 1.0 × 10?6 to 8.0 × 10?4 m with a detection limit of 1.3 × 10?7 m for D‐PA. Finally, the proposed method was applied to the determination of D‐PA in a D‐PA capsule. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A highly sensitive electrochemical biosensor for the detection of trace amounts of 8‐azaguanine has been designed. Double stranded (ds)DNA molecules are immobilized onto a glassy carbon electrode surface with Langmuir–Blodgett technique. The adsorptive voltammetric behaviors of 8‐azaguanine at DNA‐modified electrode were explored by means of cyclic voltammetry and square wave voltammetry. Compared with bare glassy carbon electrode (GCE), the Langmuir–Blodgett film modified electrode can greatly improve the measuring sensitivity of 8‐azaguanine. Under the optimum experimental conditions, the Langmuir–Blodgett film modified electrode in pH 3.0 Britton–Robinson buffer solutions shows a linear voltammetric response in the range of 5.0×10?8 to 1.0×10?5 mol L?1 with detection limit 9.0×10?9 mol L?1. The method proposed was applied successfully for the determination of 8‐azaguanine in diluted human urine with wonderful satisfactory.  相似文献   

20.
Based on single‐walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE/SWCNTs), a novel method was presented for the determination of L ‐tyrosine. The GCE/SWCNTs exhibited remarkable catalytic and enhanced effects on the oxidation of L ‐tyrosine. In 0.10 mol/L citric acid‐sodium citrate buffer solution, the oxidation potential of L ‐tyrosine shifted negatively from +1.23 V at bare GCE to +0.76 V at GCE/SWCNTs. Under the optimized experimental conditions, the linear range of the modified electrode to the concentration of L ‐tyrosine was 5.0×10?6–2.0×10?5 mol/L (R1=0.9952) and 2.7×10?5–2.6×10?4 mol/L (R2=0.9998) with a detection limit of 9.3×10?8 mol/L. The kinetic parameters such as α (charge transfer coefficient) and D (diffusion coefficient) were evaluated to be 0.66, 9.82×10?5 cm2 s?1, respectively. And the electrochemical mechanism of L ‐tyrosine was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号