共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
Dr. Wanhe Wang Ke-Jia Wu Dr. Kasipandi Vellaisamy Prof. Dr. Chung-Hang Leung Prof. Dr. Dik-Lung Ma 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(41):18053-18058
Gastrin-releasing peptide receptor (GRPr) plays proliferative and inflammatory roles in living systems. Here, we report a highly selective GRPr antagonist (JMV594)-tethered iridium(III) complex for probing GRPr in living cancer cells and immune cells. This probe exhibited desirable photophysical properties and also displayed negligible cytotoxicity, overcoming the inherent toxicity of the iridium(III) complex. Its long emission lifetime enabled its luminescence signal to be readily distinguished from the interfering fluorescence of organic dyes by using a time-resolved technique. This probe selectively visualized living cancer cells via specific binding to GRPr, while it also modulated the function of GRPr on TNF-α secretion in immune cells. To our knowledge, this is the first peptide-conjugated iridium(III) complex developed as a GRPr bioimaging probe and modulator of GRPr activity. This theranostic agent shows great potential at unmasking the diverse roles of GRPr in living systems. 相似文献
3.
A highly effective drug carrier is constructed by coating folic acid‐terminated poly(ethylene glycol) (PEG‐FA) on single walled carbon nanotubes (SWNTs) in a facile non‐covalent method. The anti‐cancer drug, doxorubicin (DOX), is further loaded on the surface of SWNTs at a very high loading efficiency, 149.3 ± 4.1%. The drug system (DOX/PEG‐FA/SWNTs) exhibits excellent stability under neutral pH conditions such as serum, but dramatically releases DOX at reduced pH typical of the tumour environment and intracellular lysosomes and endosomes. With the help of FA, DOX/PEG‐FA/SWNTs tend to selectively attach onto cancer cells and enter the lysosomes or endosomes by clathrin‐mediated endocytosis. This can greatly improve the pharmaceutical efficiency and reduce potential side effects.
4.
DNA‐Templated Assembly of a Heterobivalent Quantum Dot Nanoprobe For Extra‐ and Intracellular Dual‐Targeting and Imaging of Live Cancer Cells 下载免费PDF全文
Wei Wei Xuewen He Prof. Nan Ma 《Angewandte Chemie (International ed. in English)》2014,53(22):5573-5577
Quantum dots (QDs) hold great promise for the molecular imaging of cancer because of their superior optical properties. Although cell‐surface biomarkers can be readily imaged with QDs, non‐invasive live‐cell imaging of critical intracellular cancer markers with QDs is a great challenge because of the difficulties in the automatic delivery of QD probes to the cytosol and the ambiguity of intracellular targeting signals. Herein, we report a new type of DNA‐templated heterobivalent QD nanoprobes with the ability to target and image two spatially isolated cancer markers (nucleolin and mRNA) present on the cell surface and in the cell cytosol. Bypassing endolysosomal sequestration, this type of QD nanoprobes undergo macropinocytosis following the nucleolin targeting and then translocate to the cytosol for mRNA targeting. Fluorescence resonance energy transfer (FRET) based confocal microscopy enables unambiguous signal deconvolution of mRNA‐targeted QD nanoprobes inside cancer cells. 相似文献
5.
6.
Bioorthogonal Turn‐On Probe Based on Aggregation‐Induced Emission Characteristics for Cancer Cell Imaging and Ablation 下载免费PDF全文
Dr. Youyong Yuan Shidang Xu Dr. Xiamin Cheng Xiaolei Cai Prof. Bin Liu 《Angewandte Chemie (International ed. in English)》2016,55(22):6457-6461
Bioorthogonal turn‐on probes have been widely utilized in visualizing various biological processes. Most of the currently available bioorthogonal turn‐on probes are blue or green emissive fluorophores with azide or tetrazine as functional groups. Herein, we present an alternative strategy of designing bioorthogonal turn‐on probes based on red‐emissive fluorogens with aggregation‐induced emission characteristics (AIEgens). The probe is water soluble and non‐fluorescent due to the dissipation of energy through free molecular motion of the AIEgen, but the fluorescence is immediately turned on upon click reaction with azide‐functionalized glycans on cancer cell surface. The fluorescence turn‐on is ascribed to the restriction of molecular motion of AIEgen, which populates the radiative decay channel. Moreover, the AIEgen can generate reactive oxygen species (ROS) upon visible light (λ=400–700 nm) irradiation, demonstrating its dual role as an imaging and phototherapeutic agent. 相似文献
7.
Jing Zhang Hang Zou Jinping Lei Benzhao He Xuewen He Herman H. Y. Sung Ryan T. K. Kwok Jacky W. Y. Lam Lei Zheng Ben Zhong Tang 《Angewandte Chemie (International ed. in English)》2020,59(18):7097-7105
Gold(I) N‐heterocyclic carbene (AuI‐NHC) complexes have emerged as potential anticancer agents owing to their high cytotoxicity and stability. Integration of their above unique functions with customized aggregation‐induced emission (AIE) luminogens to achieve specific bioimaging and efficient theranostics to cancer is highly desirable but is rarely studied. Now, a series of novel AuI‐NHC compounds were developed with AIE characteristics. A complex with a PPh3 ligand was selected out as it could achieve both prominent specific imaging of various cancer cells and efficient inhibition of their growth with negligible toxic effects on normal cells due to the targeting binding and strong inhibition towards thioredoxin reductase. This complex could also act as a powerful radiosensitizer to boost the anticancer efficacy with performance superior to that of popularly used auranofin. It holds great potential as a specific and effective theranostic drug in cancer diagnosis and precise therapy. 相似文献
8.
Light Harvesting and Directional Energy Transfer in Long‐Lived Homo‐ and Heterotrimetallic Complexes of FeII,RuII, and OsII 下载免费PDF全文
Dinesh Maity Chanchal Bhaumik Sourav Mardanya Srikanta Karmakar Dr. Sujoy Baitalik 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(41):13242-13252
A new family of trimetallic complexes of the form [(bpy)2M(phen‐Hbzim‐tpy)M′(tpy‐Hbzim‐phen)M(bpy)2]6+ (M=RuII, Os; M′=FeII, RuII, Os; bpy=2,2′‐bipyridine) derived from heteroditopic phenanthroline–terpyridine bridge 2‐{4‐[2,6‐di(pyridin‐2‐yl) pyridine‐4‐yl]phenyl}‐1H‐imidazole[4,5‐f][1,10]phenanthroline (phen‐Hbzim‐tpy) were prepared and fully characterized. Zn2+ was used to prepare mixed‐metal trimetallic complexes in situ by coordinating with the free tpy site of the monometallic precursors. The complexes show intense absorptions throughout the UV/Vis region and also exhibit luminescence at room temperature. The redox behavior of the compounds is characterized by several metal‐centered reversible oxidation and ligand‐centered reduction processes. Steady‐state and time‐resolved luminescence data show that the potentially luminescent RuII‐ and OsII‐based triplet metal‐to‐ligand charge‐transfer (3MLCT) excited states in the triads are quantitatively quenched, most likely by intercomponent energy transfer to the lower lying 3MLCT (for Ru and Os) or triplet metal‐centered (3MC) excited states of the FeII subunit (nonluminescent). Interestingly, iron did not adversely affect the photophysics of the respective systems. This suggests that the multicomponent molecular‐wire‐like complexes investigated here can behave as efficient light‐harvesting antennas, because all the light absorbed by the various subunits is efficiently channeled to the subunit(s) in which the lowest‐energy excited states are located. 相似文献
9.
Chungang Wang Dr. Jiji Chen Tom Talavage Dr. Joseph Irudayaraj Prof. Dr. 《Angewandte Chemie (International ed. in English)》2009,48(15):2759-2763
Gold and pearls : Multifunctional nanoparticles, each composed of a single, amine‐modified gold nanorod, decorated with multiple “pearls” of Fe3O4 nanoparticles capped with carboxy groups, are prepared. Their effectiveness in simultaneous targeting, dual‐mode imaging, and photothermal ablation of breast cancer cells is demonstrated.
10.
Aurlie Mac Nora Hellou Joanna Hammoud Clothilde Martin Etienne S. Gauthier Ludovic Favereau Thierry Roisnel Elsa Caytan Ghassan Nasser Nicolas Vanthuyne J. A. Gareth Williams Fabienne Berre Bertrand Carboni Jeanne Crassous 《Helvetica chimica acta》2019,102(4)
A new enantiopure cyclometallated iridium complex bearing a [4]helicenic ‐coordinating and two ‐coordinating dfppy (2‐(2,4‐difluorophenyl)‐pyridyl) ligands was prepared. This complex displayed long‐lived phosphorescence both in solution and in the solid state. Its chiroptical properties, namely electronic circular dichroism and circularly polarized luminescence, were also examined. Comparison with former chiral complexes enabled assignment of the ΔIr‐(?) and ΛIr‐(+) absolute configurations. 相似文献
11.
Highly Efficient,Conjugated‐Polymer‐Based Nano‐Photosensitizers for Selectively Targeted Two‐Photon Photodynamic Therapy and Imaging of Cancer Cells 下载免费PDF全文
Dr. Xiaoqin Shen Shuang Li Dr. Lin Li Prof. Shao Q. Yao Prof. Qing‐Hua Xu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(5):2214-2221
Two‐photon photodynamic therapy (2P‐PDT) is a promising noninvasive treatment of cancers and other diseases with three‐dimensional selectivity and deep penetration. However, clinical applications of 2P‐PDT are limited by small two‐photon absorption (TPA) cross sections of traditional photosensitizers. The development of folate receptor targeted nano‐photosensitizers based on conjugated polymers is described. In these nano‐photosensitizers, poly{9,9‐bis[6′′‐(bromohexyl)fluorene‐2,7‐ylenevinylene]‐co‐alt‐1,4‐(2,5‐dicyanophenylene)}, which is a conjugated polymer with a large TPA cross section, acts as a two‐photon light‐harvesting material to significantly enhance the two‐photon properties of the doped photosensitizer tetraphenylporphyrin (TPP) through energy transfer. These nanoparticles displayed up to 1020‐fold enhancement in two‐photon excitation emission and about 870‐fold enhancement in the two‐photon‐induced singlet oxygen generation capability of TPP. Surface‐functionalized folic acid groups make these nanoparticles highly selective in targeting and killing KB cancer cells over NIH/3T3 normal cells. The 2P‐PDT activity of these nanoparticles was significantly improved, potentially up to about 1000 times, as implied by the enhancement factors of two‐photon excitation emission and singlet oxygen generation. These nanoparticles could act as novel two‐photon nano‐photosensitizers with combined advantages of low dark cytotoxicity, targeted 2P‐PDT with high selectivity, and simultaneous two‐photon fluorescence imaging capability; these are all required for ideal two‐photon photosensitizers. 相似文献
12.
Poly(L ‐lactic acid)‐block‐poly(poly(ethylene glycol) monomethacrylate) (PLLA‐b‐PPEGMA) has been prepared by the ring‐opening polymerization of lactide with a double‐headed initiator, 2‐hydroxyethyl 2′‐methyl‐2′‐bromopropionate (HMBP), followed by atom transfer radical polymerization (ATRP) of poly(ethylene glycol) monomethacrylate (PEGMA). PLLA‐b‐PPEGMA nanoparticles with encapsulated Fe3O4 are prepared by a solvent evaporation/extraction technique, and then further functionalized with folic acid, a cancer targeting ligand. Our results show that such functionalized PLLA‐b‐PPEGMA nanoparticles have good potential as carriers for targeted drug delivery in cancer treatment.
13.
Dr. Sandip V. Mulay Dr. Minsuk Choi Yoon Jeong Jang Youngsam Kim Prof. Dr. Sangyong Jon Prof. Dr. David G. Churchill 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(28):9642-9648
Two closely related phenyl selenyl based boron‐dipyrromethene (BODIPY) turn‐on fluorescent probes for the detection of hypochlorous acid (HOCl) were synthesized for studies in chemical biology; emission intensity is modulated by a photoinduced electron‐transfer (PET) process. Probe 2 intrinsically shows a negligible background signal; however, after reaction with HOCl, chemical oxidation of selenium forecloses the PET process, which evokes a significant increase in fluorescence intensity. The fluorescence intensity of probes 1 and 2 with HOCl involves an ~18 and ~50‐fold enhancement compared with the respective responses from other reactive oxygen/nitrogen species (ROS/RNS) and low detection limits (30.9 nm for 1 and 4.5 nm for 2 ). Both probes show a very fast response with HOCl; emission intensity reached a maximum within 1 s. These probes show high selectivity for HOCl, as confirmed by confocal microscopy imaging when testing with RAW264.7 and MCF‐7 cells. 相似文献
14.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(40):12280-12284
Diazirines are an attractive class of potential molecular tags for magnetic resonance imaging owing to their biocompatibility and ease of incorporation into a large variety of molecules. As recently reported, 15N2‐diazirine can be hyperpolarized by the SABRE‐SHEATH method, sustaining both singlet and magnetization states, thus offering a path to long‐lived polarization storage. Herein, we show the generality of this approach by illustrating that the diazirine tag alone is sufficient for achieving excellent signal enhancements with long‐lasting polarization. Our investigations reveal the critical role of Lewis basic additives, including water, on achieving SABRE‐promoted hyperpolarization. The application of this strategy to a 15N2‐diazirine‐containing choline derivative demonstrates the potential of 15N2‐diazirines as molecular imaging tags for biomedical applications. 相似文献
15.
《化学:亚洲杂志》2017,12(20):2656-2659
A purpose‐designed and synthesized H2O2‐reactive and photoactivatable theranostic agent 1 consisting of 1) an arylboronic acid moiety, 2) pro‐fluorophore moiety, and 3) photoactivatable moiety (photosensitizer), selectively and effectively reacted with H2O2 while simultaneously releasing resorufin for fluorescence detection under neutral aqueous conditions. In addition, 1 was cell‐permeable, and exhibited effective photocytotoxicity against fluorescently visualized cells only upon photoirradiation. The results also showed that 1 produced a selective fluorescence response to H2O2, even in living cultured cells. 相似文献
16.
17.
Meriem Benmelouka Johan Van Tol Alain Borel Saritha Nellutla Marc Port Lothar Helm Louis‐Claude Brunel André E. Merbach 《Helvetica chimica acta》2009,92(11):2173-2185
An electron paramagnetic resonance (EPR) study of glasses and magnetically dilute powders of [Gd(DTPA)(H2O)]2?, [Gd(DOTA)(H2O)]?, and macromolecular gadolinate(1?) complexes P792 was carried out at the X‐ and Q‐bands and at 240 GHz (DTPA=diethylenetriaminepentaacetato; DOTA=1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetato). The results show that the zero‐field splitting (ZFS) parameters for these complexes are quite different in a powder as compared to the frozen aqueous solution. In several complexes, an inversion of the sign of the axial component D of the zero field splitting is observed, indicating a significant structural change. In contrary to what was expected, powder samples obtained by lyophilization do not allow a more precise determination of the static ZFS parameters. The results obtained in glasses are more relevant to the problem of electron spin relaxation in aqueous solution than those obtained from powders. 相似文献
18.
Specific Light‐Up Bioprobe with Aggregation‐Induced Emission and Activatable Photoactivity for the Targeted and Image‐Guided Photodynamic Ablation of Cancer Cells 下载免费PDF全文
Dr. Meng Gao Ruoyu Zhang Prof. Dr. Ben Zhong Tang Prof. Dr. Bin Liu 《Angewandte Chemie (International ed. in English)》2015,54(6):1780-1786
Activatable photosensitizers (PSs) have been widely used for the simultaneous fluorescence imaging and photodynamic ablation of cancer cells. However, the ready aggregation of traditional PSs in aqueous media can lead to fluorescence quenching as well as reduced phototoxicity even in the activated form. We have developed a series of PSs that show aggregation‐enhanced emission and phototoxicity and thus the exact opposite behavior to that of previously reported PSs. We further developed a dual‐targeted enzyme‐activatable bioprobe based on the optimized photosensitizer and describe simultaneous light‐up fluorescence imaging and activated photodynamic therapy for specific cancer cells. The design of smart probes should thus open new opportunities for targeted and image‐guided photodynamic therapy. 相似文献
19.
Etienne S. Gauthier Laura Abella Nora Hellou Benoît Darqui Elsa Caytan Thierry Roisnel Nicolas Vanthuyne Ludovic Favereau Monika Srebro‐Hooper J. A. Gareth Williams Jochen Autschbach Jeanne Crassous 《Angewandte Chemie (International ed. in English)》2020,59(22):8394-8400
The first enantiopure chiral‐at‐rhenium complexes of the form fac‐ReX(CO)3(:C^N) have been prepared, where :C^N is a helicene‐N‐heterocyclic carbene (NHC) ligand and X=Cl or I. These have complexes show strong changes in the emission characteristics, notably strongly enhanced phosphorescence lifetimes (reaching 0.7 ms) and increased circularly polarized emission (CPL) activity, as compared to their parent chiral models lacking the helicene unit. The halogen along with its position within the dissymmetric stereochemical environment strongly affect the photophysics of the complexes, particularly the phosphorescence quantum yield and lifetime. These results give fresh insight into fine tuning of photophysical and chiroptical properties of Re‐NHC systems. 相似文献
20.
Target‐Triggered NIR Emission with a Large Stokes Shift for the Detection and Imaging of Cysteine in Living Cells 下载免费PDF全文
Background autofluorescence from biological systems generally reduces the sensitivity of a fluorescent probe for imaging biological targets. Addressing this challenge requires the development of fluorescent probes that produce emission in the near‐infrared region. Herein, we report the design and synthesis of a fluorescent probe that generates an NIR emission with a large Stokes shift upon the selective response to Cys over Hcy and GSH. The probe is designed to consist of two Cys‐sensing sites, an acrylate ester and an aldehyde installed ortho to each other. The reaction of the probe with Cys triggers an excited state intramolecular proton transfer process upon photo‐excitation, thereby producing an NIR emission with a large Stokes shift. Accordingly, this probe hold great promise for the selective detection of Cys in biological systems. We further demonstrate the capacity of this probe for Cys imaging in living cells. 相似文献