首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipoic acid (LA) and melatonin (MT) are pleiotropic molecules participating in plant stress resistance by modulating cellular biochemical changes, ion homeostasis, and antioxidant enzyme activities. However, the combined role of these two molecules in counteracting the detrimental impacts of salinity stress is still unknown. In the present study, we determined the effects of exogenous LA (0.5 µM), MT (1 µM) and their combination (LA + MT) on growth performance and biomass accumulation, photosynthetic pigments, enzymatic and non-enzymatic antioxidant activities, and ions homeostatic in canola (Brassica napus L.) seedlings under salinity stress (0, 100 mM) for 40 days. The results indicate that exogenous application of LA + MT improved the phenotypic growth (by 25 to 45%), root thickness (by 68%), number of later lateral roots (by 52%), root viability (by 44%), and root length (by 50%) under salinity stress. Moreover, total soluble protein, chlorophyll pigments, the concentration of superoxide dismutase (SOD), catalase peroxidase (CAT), and ascorbic peroxidase (ASA) increased with the presence of salt concentration into the growth media and then decreased with the addition of LA + MT to saline solution. Leaf protein contents and the degradation of photosynthetic pigments were lower when LA + MT treatments were added into NaCl media. The proline and phenol contents decreased in the exogenous application of LA + MT treatments more than individual LA or MT treatments under the salinity stress. The incorporation of LA or MT or a combination of LA + MT to saline solution decreased salinity-induced malondialdehyde and electrolyte leakage. In conclusion, the alteration of metabolic pathways, redox modulation, and ions homeostasis in plant tissues by the combined LA and MT application are helpful towards the adaptation of Brassica napus L. seedlings in a saline environment. The results of this study provide, for the first time, conclusive evidence about the protective role of exogenous LA + MT in canola seedlings under salinity stress.  相似文献   

2.
The objective of this study was to examine the protective effect of phytic acid (PA) in reducing oxidative stress in an animal model for human hereditary hemochromatosis (HH) fed high-fat diets. Sixty-four ß2 microglobulin knockout (β2m KO) mice were randomly assigned to three treatments by feeding: control (basal), atherogenic (AT), and polyunsaturated fatty acid (PUFA) diets. One-half of the mice in each treatment group were fed 2% (wt/wt) PA. The ß2m+/+ mice (wild type (WT)) were fed a basal diet. All seven groups were fed for 10 weeks with a 50-ppm iron-containing diet (AIN-93G). Free iron and lipids were measured in serum samples. Nonheme iron, thiobarbituric acid-reactive substances (TBARS), superoxide dismutase (SOD), and catalase concentrations were measured in the liver tissue. Nonheme iron concentration in ß2m KO mice (on the basal diet) was 20× higher (p < 0.0001) than in the WT mice. Compared to the WT mice, ß2m KO mice had a significantly higher concentration of free iron in the serum (p < 0.0001), six-fold higher hepatic TBARs (p < 0.0001), and 18% lower hepatic SOD level. When PA was added to the β2m KO basal diet, a reduction (26 to 50%) of iron concentration was seen in the liver and heart. The addition of PA also significantly reduced TBARs in all three dietary groups of the iron-overloaded group, but most effectively in the control group. An increase in SOD concentration was seen only in the PUFA group, but serum triacylglycerol (TG) concentration was reduced in both dietary fat groups. In conclusion, our results suggest that PA protects against oxidative stress-induced by genetic iron overload alone or when fed high fat.  相似文献   

3.
Overproduction of superoxide anion (O2.?), the primary cellular reactive oxygen species (ROS), is implicated in various human diseases. To reduce cellular oxidative stress caused by overproduction of superoxide, we developed a compound that reacts with O2.? to release a persulfide (RSSH), a type of reactive sulfur species related to the gasotransmitter hydrogen sulfide (H2S). Termed SOPD‐NAC , this persulfide donor reacts specifically with O2.?, decomposing to generate N‐acetyl cysteine (NAC) persulfide. To enhance persulfide delivery to cells, we conjugated the SOPD motif to a short, self‐assembling peptide (Bz‐CFFE‐NH2) to make a superoxide‐responsive, persulfide‐donating peptide ( SOPD‐Pep ). Both SOPD‐NAC and SOPD‐Pep delivered persulfides/H2S to H9C2 cardiomyocytes and lowered ROS levels as confirmed by quantitative in vitro fluorescence imaging studies. Additional in vitro studies on RAW 264.7 macrophages showed that SOPD‐Pep mitigated toxicity induced by phorbol 12‐myristate 13‐acetate (PMA) more effectively than SOPD‐NAC and several control compounds, including common H2S donors.  相似文献   

4.
In this study we report the synthesis and characterisation of cellulose ferulate, lipoate and alpha-tocopherulate, and their ability to inhibit lipid peroxidation in rat-liver microsomal membranes, induced in vitro by two different sources of free radicals: tert-butyl hydroperoxide and 2,2'-azobis-(2-amidinopropane). We also compared the antioxidant efficiency of the ferulate derivatives obtained through two different synthetic runs, and of a tocopherulate derivative prepared from 6-carboxycellulose. This study showed that the designed systems, preserving the antioxidant activity of the free substrates, are more effective in protecting from tert-butyl hydroperoxide than from 2,2'-azobis-(2-amidinopropane). Moreover, the cellulose ferulate with the higher degree of substitution acted as the best antioxidant.  相似文献   

5.
The potential of nanomaterials use is huge, especially in fields such as medicine or industry. Due to widespread use of nanomaterials, their cytotoxicity and involvement in cellular pathways ought to be evaluated in detail. Nanomaterials can induce the production of a number of substances in cells, including reactive oxygen species (ROS), participating in physiological and pathological cellular processes. These highly reactive substances include: superoxide, singlet oxygen, hydroxyl radical, and hydrogen peroxide. For overall assessment, there are a number of fluorescent probes in particular that are very specific and selective for given ROS. In addition, due to the involvement of ROS in a number of cellular signaling pathways, understanding the principle of ROS production induced by nanomaterials is very important. For defense, the cells have a number of reparative and especially antioxidant mechanisms. One of the most potent antioxidants is a tripeptide glutathione. Thus, the glutathione depletion can be a characteristic manifestation of harmful effects caused by the prooxidative-acting of nanomaterials in cells. For these reasons, here we would like to provide a review on the current knowledge of ROS-mediated cellular nanotoxicity manifesting as glutathione depletion, including an overview of approaches for the detection of ROS levels in cells.  相似文献   

6.
Burn wound healing remains a challenging health problem worldwide due to the lack of efficient and precise therapy. Inherent oxidative stress following burn injury is importantly responsible for prolonged inflammation, fibrotic scar, and multiple organ failure. Herein, a bioinspired antioxidative defense system coupling with in situ forming hydrogel, namely, multiresponsive injectable catechol‐Fe3+ coordination hydrogel (MICH) matrix, is engineered to promote burn‐wound dermal repair by inhibiting tissue oxidative stress. This MICH matrix serves as the special traits of “Fe‐superoxide dismutases,” small molecular antioxidant (vitamin E), and extracellular matrix (ECM) in alleviating cellular oxidative damage, which demonstrates precise scavenging on reactive oxygen species (ROS) of different cellular locations, blocking lipid peroxidation and cell apoptosis. In in vivo burn‐wound treatment, this MICH promptly integrates with injured surrounding tissue to provide hydration microenvironment and physicochemical ECM for burn wounds. Importantly, the MICH matrix suppresses tissue ROS production, reducing the inflammatory response, prompting re‐epithelization and neoangiogenesis during wound healing. Meanwhile, the remodeling skin treated with MICH matrix demonstrates low collagen deposition and normal dermal collagen architecture. Overall, the MICH prevents burn wound progression and enhances skin regeneration, which might be a promising biomaterial for burn‐wound care and other disease therapy induced by oxidative stress.  相似文献   

7.
The racemization of d ‐aspartic acid to l ‐aspartic acid has been successfully performed with a coupled enzyme system at 90 °C and a pH of about 4.0 by the assay of high‐performance liquid chromatography. This coupled enzymatic racemization is a successive two‐step reaction first induced by d ‐amino acid oxidase and a subsequent coupled reaction by an aminotransferase clonezyme with the help of coenzyme pyridoxal 5′‐phosphate and cosubstrate l ‐glutamate. Due to the very high temperature, part of the l ‐aspartic acid is produced by the thermal effect. In fact the thermal racemization for aspartic acid can proceed from either d ‐ or l ‐aspartic acid via an intermediate fumaric acid and leads to the formation of d ,l ‐malic acid. The formation of α‐oxalacetic acid formed irreversibly from d ‐aspartic acid with d ‐amino acid oxidase can induce a side reaction to l ‐alanine. The thermal effect may also be responsible for the production of d ‐, and l ‐alanine.  相似文献   

8.
To help to clarify therapeutic functions of lipoic acid (LA) in biochemical and clinical practice we have elaborated a fast, simple and accurate HPLC method enabling determination of LA in human urine. The proposed analytical approach includes reduction of LA with tris(2‐carboxyethyl)phosphine and simultaneous separation and derivatization of the analyte with butylamine and o‐phthaldialdehyde followed by spectrofluorimetric detection at λex = 340 nm and λem = 440 nm. The assay was performed using gradient elution and the mobile phase containing 0.0025 mol L?1 o‐phthaldialdehyde in 0.0025 mol L?1 NaOH and acetonitrile. Linearity of the detector response for LA was observed in the range of 0.3–8 μmol L?1. Limits of detection and quantification for LA in urine samples were 0.02 and 0.03 μmol L?1, respectively. The total analysis time, including sample work‐up, was <20 min. The analytical procedure was successfully applied to analysis of real urine samples delivered from six healthy volunteers who received a single 100 mg dose of LA.  相似文献   

9.
The complexation of the natural antioxidants α‐lipoic acid (ALA) and its reduced form dihydrolipoic acid (DHLA) with Hg2+ was investigated by a recently proposed differential pulse voltammetric (DPV) method using the rotating Au‐disk electrode. Complexation processes are proposed from the multivariate curve resolution by alternating least squares (MCR‐ALS) analysis of DPV titration data. Main complexes were both 1 : 1 Hg : ALA and Hg : DHLA, although the formation of 1 : 2 complexes can be also deduced. ALA and DHLA show different Hg2+‐binding patterns at different pH. Voltammetric findings are completed with the data obtained by electrospray ionization mass‐spectrometry (ESI‐MS), especially in negative mode.  相似文献   

10.
A Novel solid polymer electrolyte (SPE) membrane containing both ? COOH and ? SO3H group has been prepared by simultaneous method of radiation grafting of acrylic acid onto FEP followed by sulfonation. The presence of weakly acidic acrylic acid controls the swelling in water while ? SO3H group provides conductivity due to its strongly ionic characteristic. FEP‐g‐acrylic acid and its sulfonated derivatives were characterized by their properties. While the mechanical properties decreased, other properties such as ion exchange capacity (IEC), water uptake and ionic conductivity increased with increase in graft content. These properties further changed on sulfonation. Acrylic acid being weakly acidic in nature, conductivity values of the grafted membrane were quite low. However, introduction of strong ? SO3H group resulted in conductivity closer to Nafion 117. Few sulfonated membranes have been tested with respect to H2/O2 fuel cell performance. Short‐term fuel cell test for 100 hr gave a stable performance. These membranes are less expensive compared to Nafion. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Kavosh Majlesi 《中国化学》2010,28(10):1973-1977
The Solver, Microsoft Excel 2000 powerful optimization package, has been used to perform non‐linear least‐squares curve fitting on the basis of Gauss‐Newton method for the calculation of solvatochromic regression coefficients for the complexation of molybdenum(VI) with ethylenediamine‐N,N′‐diacetic acid and dissociation constants at 25°C and constant ionic strength 0.1 mol·L−1 sodium perchlorate in different aqueous solutions of methanol. A combination of potentiometric and UV spectrophotometric methods have been used for experimental studies. Non specific and specific solute‐solvent interactions were interpreted by correlating the equilibrium data with solvent parameters using the Kamlet‐Abboud‐Taft solvatochromic equation. Finally the influence of the solvent on the stability of the complex was discussed on the basis of the correlation results and the contribution of α (hydrogen‐bond donor acidity), β (hydrogen‐bond acceptor basicity) and π* (dipolarity/polarizability) parameters.  相似文献   

13.
A sensitive and selective method for the determination of Sb3+ based on the formation of its complexes with 8‐hydroxyquinoline (HQ) and 8‐hydroxyquinoline‐5‐sulfonic acid (HQS) is proposed. The best analytical conditions are: pH 5.4 and 2.2 for HQ and HQS, respectively; CHQ from 15.0 to 25.0 µmol L?1 and CHQS from 70.0 to 200.0 µmol L?1. The detection limits are 100.0 and 14.0 ng L?1 (tacc=30 s) for Sb3+ with HQ and HQS, respectively. The method using HQS as ligand has a 2.2‐fold higher sensitivity than that with HQ and the former was chosen for Sb3+ determination.  相似文献   

14.
The kinetics and mechanisms of the oxidative degradation of 2,4‐dihydroxybenzoic acid (2,4‐DHBA) by the Fenton and photo‐Fenton processes were investigated in detail by a combination of HPLC, IC, and TOC analyses. The formation of 2,3,4‐trihydroxybenzoic acid (2,3,4‐THBA) at an early oxidation stage shows that hydroxylation of the aromatic ring is the first step of the process. This intermediate was able to reduce FeIII and to contribute to the recycling of FeII. Complete mineralization could only be achieved under irradiation (photo‐Fenton). A detailed study of the dependence of the rate of mineralization on the concentration of H2O2 and dissolved O2 was carried out. It was found that, even at a low initial concentration of H2O2, mineralization by the photo‐Fenton process was complete in a relatively short time, provided that the O2 concentration was high enough, indicating that O2 may, at least in part, substitute H2O2. Channeling reaction pathways toward O2 rather than H2O2 consumption is of particular interest for the technical development of the photo‐Fenton process.  相似文献   

15.
Two polyether bridged dihydroxamic acids and their mono-and binuclear manganese(Ⅱ), zinc(Ⅱ) complexes have been synthesized and employed as models to mimic hydrolase in catalytic hydrolysis of p-nitrophenyl picolinate (PNPP). The reaction kinetics and the mechanism of hydrolysis of PNPP have been investigated. The kinetic mathematical model for PNPP cleaved by the complexes has been proposed. The effects of the different central metal ion, mono-and binuclear metal, the pseudo-macrocyclic polyether constructed by polyethoxy group of the complexes, and reactive temperature on the rate for catalytic hydrolysis of PNPP have been examined. The results showed that the transition metal dthydroxamates exhibited high catalytic activity to the hydrolysis of PNPP, the catalytic activity of binuclear complexes was higher than that of mononuclear ones, and the pseudo-macrocyclic polyether might synergetically activate H20 coordinated to metal ion with central metal ion together and promote the catalytic hydrolysis of PNPP.  相似文献   

16.
Four new transitional metal supramolecular architectures, [Zn(cca)(2,2′‐bpy)]n · n(2,2′‐bpy) ( 1 ), [Cu(cca)(2,2′‐bpy)]n ( 2 ), [Zn(bpdc)(2,2′‐bpy)(H2O)]n · 0.5nDMF · 1.5nH2O ( 3 ), and [Co(bpdc)(2,2′‐bpy)(H2O)]n · nH2O ( 4 ) (H2cca = p‐carboxycinnamic acid; H2bpdc = 4,4′‐biphenyldicarboxylic acid; 2,2′‐bpy = 2,2′‐bipyridine) were synthesized by hydrothermal reactions and characterized by single crystal X‐ray diffraction, elemental analyses, and IR spectroscopy. Although the metal ions in these four compounds are bridged by linear dicarboxylic acid into 1D infinite chains, there are different π–π stacking interactions between the chains, which results in the formation of different 3D supramolecular networks. Compound 1 is of a 3D open‐framework with free 2,2′‐bpy molecules in the channels, whereas compound 2 is of a complicated 3D supramolecular network. Compounds 3 and 4 are isostructural. Both compounds have open‐frameworks.  相似文献   

17.
Catalytic base‐induced decarboxylation of polyunsaturated α‐cyano‐β‐methyl acids derived from malonic acid led to the corresponding nitriles 3 (Schemes 2 and 3), 6 (Scheme 5), and 9 (Scheme 6). This decarboxylation occurred with previous deconjugation of the α,β‐alkene moiety of the α‐cyano‐β‐methyl acid, leading to an α‐cyano‐β‐methylene propanoic acid which was easily decarboxylated (see Scheme 2). β‐Methylene intermediates, in some cases, could be isolated; mechanistic pathways are proposed. The nitriles 3, 6 , and 9 were reduced to the sesquiterpene aldehydes 4 (β‐end group), 7 (φ‐end group), and 10 (ψ‐end group), respectively.  相似文献   

18.
Reactions of Au(III) with biomolecules are of interest in relation to understanding the mechanism of action of therapeutic gold compounds. NMR investigations of 13C and 15N isotopically‐labelled glycine and alanine show that Au(III) induces deamination and subsequent decarboxylation of both amino acids with the same mechanism. For comparison, reactions of Au(III) with sarcosine and the dicarboxylic acid malonic acid were also investigated. The major intermediates and products have been identified.  相似文献   

19.
20.
Based on preliminary voltammetric investigations at unmodified and modified electrodes in aqueous solutions buffered at different pHs, a profitable thin layer dual‐electrode detector was developed for the selective and simultaneous determination of ascorbic acid (AA) and hydrogen peroxide present in the same samples. It consists of a small thickness (0.1 mm) cell, used as a detector for a flow injection system, in which a glassy carbon (GC) and a polyeugenol coated Pt electrode are encased. The GC electrode is selective for AA, thanks to the potential applied (0.3 V vs. Ag/AgCl,Cl?sat), while H2O2 alone can be oxidized at the Pt electrode (0.75 V), thanks to the size selectivity and electrostatic screen properties displayed by the polyeugenol coating layer which prevents oxidation of ascorbate anions. Repeatable sharp peaks (±4.5 %) were detected for both analytes over wide linear ranges (0.005–1.000 mM) and detection limits of about 10?6 M (176 ppb) and 5×10?7 M (16 ppb) were inferred for AA and H2O2 respectively. This flow injection approach was applied to the analysis of some orange‐taste soft drinks, used as prototype real samples, spiked with controlled amounts of both analytes, thus inferring good recoveries which pointed out that deviations never exceeding 5 % affected the relevant accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号