共查询到20条相似文献,搜索用时 0 毫秒
1.
Shengyu Shi Dr. Chenzhi Yao Jie Cen Lei Li Dr. Guhuan Liu Dr. Jinming Hu Prof. Dr. Shiyong Liu 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(41):18329-18335
Commercial PEG-amine is of unreliable quality, and conventional PEG functionalization relies on esterification and etherification steps, suffering from incomplete conversion, harsh reaction conditions, and functional-group incompatibility. To solve these challenges, we propose an efficient strategy for PEG functionalization with carbamate linkages. By fine-tuning terminal amine basicity, stable and high-fidelity PEG-amine with carbamate linkage was obtained, as seen from the clean MALDI-TOF MS pattern. The carbamate strategy was further applied to the synthesis of high-fidelity multi-functionalized PEG with varying reactive groups. Compared to with an ester linkage, amphiphilic PEG-PS block copolymers bearing carbamate junction linkage exhibits preferential self-assembly tendency into vesicles. Moreover, nanoparticles of the latter demonstrate higher drug loading efficiency, encapsulation stability against enzymatic hydrolysis, and improved in vivo retention at the tumor region. 相似文献
2.
Yaqiong Zhang Shengrong Guo Chengfei Lu Li Liu Zonghai Li Jianren Gu 《Journal of polymer science. Part A, Polymer chemistry》2007,45(4):605-613
Nontoxic and biodegradable poly(?‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(?‐caprolactone) triblock copolymers were synthesized by the solution polymerization of ?‐caprolactone in the presence of poly(ethylene glycol). The chemical structure of the resulting triblock copolymer was characterized with 1H NMR and gel permeation chromatography. In aqueous solutions of the triblock copolymers, the micellization and sol–gel‐transition behaviors were investigated. The experimental results showed that the unimer‐to‐micelle transition did occur. In a sol–gel‐transition phase diagram obtained by the vial‐tilting method, the boundary curve shifted to the left, and the gel regions expanded with the increasing molecular weight of the poly(?‐caprolactone) block. In addition, the hydrodynamic diameters of the micelles were almost independent of the investigated temperature (25–55 °C). The atomic force microscopy results showed that spherical micelles formed at the copolymer concentration of 2.5 × 10?4 g/mL, whereas necklace‐like and worm‐like shapes were adopted when the concentration was 0.25 g/mL, which was high enough to form a gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 605–613, 2007 相似文献
3.
Irina Cotiuga Francesco Picchioni Uday S. Agarwal Bastiaan B. P. Staal Jef A. J. M. Vekemans Piet J. Lemstra 《Macromolecular rapid communications》2006,27(4):242-246
Summary: We report the synthesis of well‐defined block copolymers by covalent coupling of hydroxy end‐functionalized polymers. Using the high volatility of the coupling agent phosgene as compared to the solvent, very high conversion (up to 96%) is obtained in a one‐pot reaction with as little as 10−5 moles of each of the reacting polymers, even without prior purification of the as‐received reagents. This has potential as an alternative to the currently practiced method of sequential living polymerization of constituent monomers, with the added advantage of direct knowledge and control over the length distribution of each block.
4.
Suming Li 《Macromolecular bioscience》2003,3(11):657-661
Block copolymers were synthesized by ring‐opening polymerization of L ‐lactide or D ‐lactide in the presence of mono‐ or dihydroxyl poly(ethylene glycol), using zinc metal as catalyst. The resulting copolymers were characterized by various techniques, namely 1H NMR spectroscopy, differential scanning calorimetry (DSC), X‐ray diffractometry, and Raman spectrometry. The composition of the copolymers was designed such that they were water soluble. Bioresorbable hydrogels were prepared from aqueous solutions containing both poly(L ‐lactide)/poly(ethylene glycol) and poly(D ‐lactide)/poly(ethylene glycol) block copolymers. Rheological studies confirmed the formation of hydrogels resulting from stereocomplexation between poly(L ‐lactide) and poly(D ‐lactide) blocks.
5.
Nikos Karanikolopoulos Ioannis Choinopoulos Marinos Pitsikalis 《Journal of polymer science. Part A, Polymer chemistry》2020,58(11):1582-1600
A series of well-defined poly{dl -lactide-b-[oligo(ethylene glycol) methyl ether (meth)acrylate)]} (PDLLA-b-POEG[M]A) functional amphiphilic diblock copolymers was synthesized by employing a multistep procedure involving: (a) ring-opening polymerization of dl -lactide using n-decanol and stannous octoate as the initiating system, (b) esterification reaction of the PDLLA hydroxyl end groups with 2-bromoisobutyryl bromide, (c) atom transfer radical polymerization of OEG(M)A with the newly created bromoisobutyryl initiating site, and (d) incorporation of biotin or folic acid at the POEGA chain ends using click chemistry. The products were characterized by NMR spectroscopy and SEC analysis. The aggregation behavior of the synthesized block copolymers was investigated by dynamic light scattering at 25°C in aqueous solutions. The hydrophobic model compounds Nile red and pyrene were efficiently incorporated into the copolymer aggregates in aqueous solutions. High partition coefficient values were determined by fluorescence spectroscopy. 相似文献
6.
The stereocomplex formation between enantioselective poly(lactide) (PLA) homopolymers is well understood. In this report an attempt is made to analyze the influence on the self‐assembling of the stereocomplex of enantiomorphic PLA‐PEG di‐ and tri‐blocks in different solvents. Powder diffraction studies showed the poly(ethylene glycol) (PEG) and the PLA blocks crystallize separately forming unique supra structures like rods, discs and coiled coils with dimensions in the micrometer scale in length and sub‐micrometer scale in diameter. The influence of the solvents on the crystal formation was shown in the formation of uniform structures. Discs emerged from equimolar mixtures of the D ‐ and L ‐configured di‐ and tri‐block copolymers, in dioxan and acetonitrile and in water the stereocomplexes crystallized mainly as rods. In some cases the rods were observed as coiled coils. The shape, the hydrophobic/hydrophilic content and the PEG coated surface of the discs give them a future potential as matrix for the controlled and targeted delivery of bioactive agents. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
7.
A novel approach is employed to produce core–corona nanospheres, which introduces a stereoregular hydrophilic part to an amphiphilic block copolymer. The resultant morphology is reported using isotactic‐poly(methacrylic acid)‐block‐poly(butyl acrylate). Infrared spectroscopy revealed a supramolecular interaction, and X ray diffraction revealed the crystallization of the outer isotactic‐poly(methacrylic acid) part. The nanostructure, which looks like a nanosized ‘grape’, was formed when nanospheres and nanofibers coexisted simultaneously and partially fused.
8.
首先以聚乙二醇单甲醚(mPEG-OH)为单体,采用经典的盖布瑞尔伯胺合成法合成了端氨基聚乙二醇单甲醚(mPEG-NH_2);然后以mPEG-NH_2为引发剂,S-苄基L-半胱氨酸N-羧酸内酸酐(BCys-NCA)为原料,通过N-羧酸内酸酐(NCA)开环聚合反应和液氨/钠处理脱除侧链上的保护基团,合成了两亲性嵌段共聚物甲氧基聚乙二醇-b-聚L-半胱氨酸(mPEG-b-PCys)。采用傅里叶变换红外光谱、核磁共振氢谱对聚合物的结构和组成进行了表征。结果表明:成功制备了侧链具有还原性巯基的两亲性嵌段共聚物mPEG-b-PCys,并且其聚合度可控性良好。 相似文献
9.
Despoina Giaouzi Stergios Pispas 《Journal of polymer science. Part A, Polymer chemistry》2019,57(13):1467-1477
We report on the synthesis of novel poly(N‐isopropylacrylamide)‐b‐poly(oligo ethylene glycol methyl ether acrylate) (PNIPAM‐b‐POEGA) thermoresponsive block copolymers using reversible addition–fragmentation chain transfer polymerization methodologies. The synthesized block copolymers are characterized by gel permeation chromatography, nuclear magnetic resonance, Fourier transform infrared (FTIR) techniques in terms of molecular weight and composition. Their thermoresponsive self‐assembly in aqueous media is investigated using dynamic and static light scattering. The PNIPAM‐b‐POEGA thermoresponsive block copolymers formed aggregates in water by increasing the temperature above the lower critical solution temperature value of PNIPAM block. Solution pH seems to affect the self‐assembly behavior in some cases due to the presence of ? COOH end groups. Therefore, the copolymers were utilized as “smart” nanocarries for the hydrophobic drug indomethacin, implementing a novel encapsulation protocol taking advantage of the thermoresponsive character of the PNIPAM block. The empty and loaded self‐assembled nanocarriers systems were studied by light scattering techniques, ultraviolet–visible, and FTIR spectroscopy, which gave information on the size and structure of the nanocarriers, the drug loading content and the interactions between the drug and the components of the block copolymers. Drug loaded nanostructures show stability at room temperature, due to active drug/block copolymer interactions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1467–1477 相似文献
10.
Well‐defined diblock copolymers, poly(ethylene glycol)‐block‐poly(glycidyl methacrylate)s (PEG‐b‐PGMAs), with different poly(glycidyl methacrylate) (PGMA) chains, were prepared via atom transfer radical polymerization (ATRP) from the same macromolecular initiator 2‐bromoisobutyryl‐terminated poly(ethylene glycol) (PEG). Ethyldiamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), and polyethyleneimine (PEI) with an of 400 (PEI400) were used to decorate PEG‐b‐PGMAs to get the cationic polymers PEG‐b‐PGMA‐ oligoamines. These cationic polymers possessed high buffer capability and could condense plasmid DNA (pDNA) into nanoscaled complexes of 125–530 nm. These complexes showed the positive zeta potential of 20–35 mV at N/P ratios of 10–50. Most of them exhibited very low cytotoxicity and good transfection efficiency in 293T cells. The presence of the serum medium did not decrease the transfection efficiency due to the steric stabilization of the PEG chains.
11.
Jinfeng Xing Liandong Deng Chaopeng Xie Li Xiao Yinglei Zhai Fengmin Jin Yimei Li Anjie Dong 《先进技术聚合物》2011,22(5):669-674
A series of amphiphilic triblock copolymers, methoxy poly(ethylene glycol)‐b‐poly(octadecanoic anhydride)‐b‐methoxy poly(ethylene glycol) (mPEG‐b‐POA‐b‐mPEG), were prepared via melt polycondensation of methoxy poly(ethylene glycol) (mPEG) and poly(octadecanoic anhydride) (POA). mPEG‐b‐POA‐b‐mPEG were characterized by FTIR, 1H‐NMR, GPC, DSC, and XRD. Drug‐loaded mPEG‐b‐POA‐b‐mPEG nanoparticles (NPs) with spherical morphology and narrow size polydispersity index were prepared by nanoprecipitation technique with paclitaxel as the model drug. In vitro release behaviors of drug‐loaded NPs present that the biphasic process and the release mechanism of each phase are zero order drug releases. According to this study, mPEG‐b‐POA‐b‐mPEG NPs could serve as suitable delivery agents for paclitaxel and other hydrophobic drugs. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
12.
Stefania Cometa Federica Chiellini Irene Bartolozzi Emo Chiellini Elvira De Giglio Luigia Sabbatini 《Macromolecular bioscience》2010,10(3):317-327
The ability to predict the in vivo performance of multiblock‐copolymer‐based biomaterials is crucial for their applicability in the biomedical field. In this work, XPS analysis of PCL‐PEG copolymers was carried out, as well as morphological and wettability evaluations by SEM and CA measurements, respectively. XPS analysis on films equilibrated in PBS demonstrated a further enrichment in the PEG component on the surface. Copolymer films obtained by casting using different solvents showed a dependence in segregation according to the solvent employed. Cell adhesion tests demonstrated the importance of copolymer segregation and rearrangement in a wet environment, with a dependence of these phenomena on the copolymer molecular weight.
13.
Cdric Bergerbit Florian Baffie Arne Wolpers Pierre‐Yves Dugas Olivier Boyron Manel Taam Muriel Lansalot Vincent Monteil Franck D'Agosto 《Angewandte Chemie (International ed. in English)》2020,59(26):10385-10390
Poly(ethylene oxide) (PEO) with dithiocarbamate chain ends (PEO–SC(=S)?N(CH3)Ph and PEO–SC(=S)?NPh2, named PEO‐1 and PEO‐2 , respectively) were used as macromolecular chain‐transfer agents (macro‐CTAs) to mediate the reversible addition–fragmentation chain transfer (RAFT) polymerization of ethylene in dimethyl carbonate (DMC) under relatively mild conditions (80 °C, 80 bar). While only a slow consumption of PEO‐1 was observed, the rapid consumption of PEO‐2 led to a clean chain extension and the formation of a polyethylene (PE) segment. Upon polymerization, the resulting block copolymers PEO‐b‐PE self‐assembled into nanometric objects according to a polymerization‐induced self‐assembly (PISA). 相似文献
14.
通过酰氯化法与碳二亚胺缩合法(EDC/NHS)制备氨基化聚乙二醇(PEG1500N)修饰的多壁碳纳米管(MWNTs)并采用FTIR、Raman、TEM、原子力显微镜(AFM)、TGA-DTA-DSC、UV-Vis进行表征与分析。实验结果发现:两种方法PEG1500N都能很好地修饰MWNTs,但EDC/NHS缩合法采用更短的反应时间(反应1 d),达到了更好的接枝效果。EDC/NHS缩合法提高了碳管上羧基的利用率,接枝率大大提高。TGA-DTA分析表明缩合法接枝率为30%,而酰氯化法(反应4 d)为15%。UV-Vis分析表明EDC/NHS缩合法得到的产物溶解性也更好,溶解度由1.19 mg·mL-1(酰氯化法得到的产物的溶解度)提高到2 mg·mL-1以上。 相似文献
15.
Xiaona Lin Ruimei Zhou Yong Qiao Fengmin Jin Yinglei Zhai Jinfeng Xing Liandong Deng Anjie Dong 《Journal of polymer science. Part A, Polymer chemistry》2008,46(23):7809-7815
Amphiphilic triblock copolymers, poly(ethyl cyanoacrylate)‐b‐poly(ethylene glycol)‐b‐poly(ethyl cyanoacrylate) (PECA‐b‐PEG‐b‐PECA), were synthesized via oxyanion‐initiated polymerization with sodium alcoholate‐terminated PEG as macroinitiator. PECA‐b‐PEG‐b‐PECA were characterized by gel permeation chromatography system, 1H NMR and FTIR. The results indicate that the copolymerization is well controlled with narrow molecular weight distribution. The dexamethasone (DXM)‐loaded PECA‐b‐PEG‐b‐PECA nanoparticles (NPs) were prepared by nanoprecipitation technique and then characterized by Laser Particle Size Analyzer, 1H NMR and transmission electron microscopy. The drug‐loaded PECA‐b‐PEG‐b‐PECA NPs are of spherical shape with average size of less than 100 nm. The drug‐loaded amount (DLA) and encapsulation efficiency of DLNPs were investigated by HPLC. The results show that DXM can be effectively incorporated into PECA‐b‐PEG‐b‐PECA NPs, which provides an optional delivery system for DXM and other hydrophobic drugs. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7809–7815, 2008 相似文献
16.
Poly(ethylene glycol) (PEG) can serve as an electron‐beam (e‐beam) resist to modulate protein adsorption on and cell adhesion to surfaces. PEG preferentially crosslinks under e‐beam irradiation to create microgels with controllable properties. Here, atomic‐force, scanning electron, and confocal microscopies are used to study discrete microgels formed from solvent‐cast PEG thin films by focused e‐beams with energies between 2 and 30 keV and point doses between 10 and 1000 fC. Consistent with experimental findings, Monte Carlo simulation of electron energy deposition identifies three structures within each microgel: a highly crosslinked core near the point of electron incidence; a lightly crosslinked near corona surrounding the core; and a far corona at the PEG–Si interface. The nature and relative sizes of these three regions and, hence, the microgel–protein interactions depend on the incident electron energy and dose. The far corona creates protein‐repulsive surface hundreds of nanometers or more from the microgel core. The highly crosslinked core is largely shielded by the near corona. These findings can help guide the choice of irradiation conditions to most effectively modulate protein–surface interactions via PEG microgels patterned by e‐beam lithography. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1543–1554 相似文献
17.
Yong Zhang Zhijie Zhang Qian Wang Caihong Xu Zemin Xie 《Macromolecular rapid communications》2006,27(17):1476-1482
Summary: Amphiphilic triblock copolymers (PEOx‐b‐PDMSy‐b‐PEOx) with different block lengths were synthesized and multi‐morphological complex crew‐cut, star‐like, and short‐chain aggregates were prepared by self‐assembly of the given copolymers. The morphologies and dimensions of the aggregates can be well controlled by variation of the preparation conditions. TEM, SEM, FFR‐TEM, and LLS studies show the resulting morphologies range from LCMs, unilamellar or multilayer vesicles, LCVs, porous spheres to nanorods.
18.
H. Hussain B.H. Tan K. Y. Mya Y. Liu C. B. He Thomas P. Davis 《Journal of polymer science. Part A, Polymer chemistry》2010,48(1):152-163
The synthesis, micelle formation, and bulk properties of semifluorinated amphiphilic poly(ethylene glycol)‐b‐poly(pentafluorostyrene)‐g‐cubic polyhedral oligomeric silsesquioxane (PEG‐b‐PPFS‐g‐POSS) hybrid copolymers is reported. The synthesis of amphiphilic PEG‐b‐PPFS block copolymers are achieved using atom transfer radical polymerization (ATRP) at 100 °C in trifluorotoluene using modified poly(ethylene glycol) as a macroinitiator. Subsequently, a proportion of the reactive para‐F functionality on the pentafluorostyrene units was replaced with aminopropylisobutyl POSS through aromatic nucleophilic substitution reactions. The products were fully characterized by 1H‐NMR and GPC. The products, PEG‐b‐PPFS and PEG‐b‐PPFS‐g‐POSS, were subsequently self‐assembled in aqueous solutions to form micellar structures. The critical micelle concentrations (cmc) were estimated using two different techniques: fluorescence spectroscopy and dynamic light scattering (DLS). The cmc was found to decrease concomitantly with the number of POSS particles grafted per copolymer chain. The hydrodynamic particle sizes (Rh) of the micelles, calculated from DLS data, increase as the number of POSS molecules grafted per copolymer chain increases. For example, Rh increased from ~60 nm for PEG‐b‐PPFS to ~80 nm for PEG‐b‐PPFS‐g‐POSS25 (25 is the average number of POSS particles grafted copolymer chain). Static light scattering (SLS) data confirm that the formation of larger micelles by higher POSS containing copolymers results from higher aggregation numbers (Nagg), caused by increased hydrophobicity. The Rg/Rh values, where Rg is the radius of gyration calculated from SLS data, are consistent with a spherical particle model having a core‐shell structure. Thermal characterization by differential scanning calorimetry (DSC) reveals that the grafted POSS acts as a plasticizer; the glass transition temperature (Tg) of the PPFS block in the copolymer decreases significantly with increasing POSS content. Finally, the rhombohedral crystal structure of POSS in PEG‐b‐PPFS‐g‐POSS was verified by wide angle X‐ray diffraction measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 152–163, 2010 相似文献
19.
Sung‐Wook Choi Yongwoo Kim In Woo Cheong Jung‐Hyun Kim 《Macromolecular rapid communications》2008,29(2):175-180
This paper aims to report the fabrication of biodegradable thin films with micro‐domains of cylindrical nanochannels through the solvent‐induced microphase separation of poly(L ‐lactide)‐block‐poly(ethylene glycol)‐block‐poly(L ‐lactide) (PLA‐b‐PEG‐b‐PLA) triblock copolymers with different block ratios. In our experimental scope, an increase in each of the block lengths of the PLA and PEG blocks led to both a variation in the average number density (146 to 32 per 100 µm2) and the size of the micro‐domains (140 to 427 nm). Analyses by atomic force microscopy (AFM) and fluorescence microscopy indicated that the hydrophilic PEG nanochannels were dispersed in the PLA matrix of the PLA‐b‐PEG‐b‐PLA films. We demonstrated that the micro‐domain morphology could be controlled not only by the block length of PEG, but also by the solvent evaporation conditions.