首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triangular zigzag nanographenes, such as triangulene and its π-extended homologues, have received widespread attention as organic nanomagnets for molecular spintronics, and may serve as building blocks for high-spin networks with long-range magnetic order, which are of immense fundamental and technological relevance. As a first step towards these lines, we present the on-surface synthesis and a proof-of-principle experimental study of magnetism in covalently bonded triangulene dimers. On-surface reactions of rationally designed precursor molecules on Au(111) lead to the selective formation of triangulene dimers in which the triangulene units are either directly connected through their minority sublattice atoms, or are separated via a 1,4-phenylene spacer. The chemical structures of the dimers have been characterized by bond-resolved scanning tunneling microscopy. Scanning tunneling spectroscopy and inelastic electron tunneling spectroscopy measurements reveal collective singlet–triplet spin excitations in the dimers, demonstrating efficient intertriangulene magnetic coupling.  相似文献   

2.
We report on the influence of the surface structure and the reaction kinetics in the bottom-up fabrication of porous nanoribbons on silver surfaces using low-temperature scanning tunneling microscopy. The porous carbon nanoribbons are fabricated by the polymerization of 1,3,5-tris(3-bromophenyl)benzene directly on the Ag surface using an Ullmann-type reaction in combination with dehydrogenative coupling reactions. We demonstrate the successful on-surface synthesis of porous nanoribbons on Ag(111) and Ag(100) even though the self-assemblies of the intermediate organometallic structures and covalently-linked polymer chains are different on both surfaces. Furthermore, we present the formation of isolated porous nanoribbons by kinetic control. Our results give valuable insights into the role of substrate-induced templating effects and the reaction kinetics in the on-surface synthesis of conformationally flexible molecules.  相似文献   

3.
The successful synthesis of a threefold symmetric C78H36 molecule with 22 fused benzene rings is reported. This clover‐shaped nanographene was characterized on an ultrathin insulating film with atomic resolution by scanning probe microscopy.  相似文献   

4.
Round and round : Covalently bound spokes induce an efficient template‐directed cyclization towards a rigid molecular wheel (see figure) and afford dramatically increased shape‐persistence properties compared with non‐strutted macrocycles.

  相似文献   


5.
On‐surface Pd‐ and Cu‐catalyzed C?C coupling reactions between phenyl bromide functionalized porphyrin derivatives on an Au(111) surface have been investigated under ultra‐high vacuum conditions by using scanning tunneling microscopy and kinetic Monte Carlo simulations. We monitored the isothermal reaction kinetics by allowing the reaction to proceed at different temperatures. We discovered that the reactions catalyzed by Pd or Cu can be described as a two‐phase process that involves an initial activation followed by C?C bond formation. However, the distinctive reaction kinetics and the C?C bond‐formation yield associated with the two catalysts account for the different reaction mechanisms: the initial activation phase is the rate‐limiting step for the Cu‐catalyzed reaction at all temperatures tested, whereas the later phase of C?C formation is the rate‐limiting step for the Pd‐catalyzed reaction at high temperature. Analysis of rate constants of the Pd‐catalyzed reactions allowed us to determine its activation energy as (0.41±0.03) eV.  相似文献   

6.
7.
This work describes an innovative concept for the development of organized molecular systems based on the template effect of the pre‐structured semi‐conductive SmSi(111) interface. This substrate is selected because Sm deposition in the submonolayer range leads to a 8×2‐reconstruction, which is a well‐defined one‐dimensional semi‐metallic structure. Adsorption of aromatic molecules [1,4‐di‐(9‐ethynyltriptycenyl)‐benzene] on SmSi(111)‐ 8×2 and Si(111)‐7×7 interfaces is investigated by scanning tunneling microscopy (STM) at room temperature. Density functional theory (DFT) and semi‐empirical (ASED+) calculations define the nature of the molecular adsorption sites of the target molecule on SmSi as well as their self‐alignment on this interface. Experimental data and theoretical results are in good agreement.  相似文献   

8.
We demonstrate an enhancement of cyclization against polymerization for the on-surface debrominative coupling reaction, by using the metal-organic Cu−N coordination template to direct the reaction pathways. Experiments performed by using ultrahigh-vacuum scanning tunneling microscopy (UHV-STM), with the substitution of metal-coordination centers, metallic substrates and functional organic ligands, corroborate the template effect of the Cu−N coordination.  相似文献   

9.
On-surface chemistry is a promising way to achieve the bottom-up construction of covalently-bonded molecular precursors into extended atomically-precise polymers adsorbed on surfaces. These polymers exhibit unprecedented physical or chemical properties which are of great interest for various potential applications. These nanostructures were mainly obtained in ultra-high vacuum (UHV) on noble metal single-crystal surfaces by thermal annealing as stimulus to provoke the polymerization with a catalytic role of the surface adatoms. Nevertheless, photons are also a powerful source of energy to induce the formation of covalent architectures, even if it is less-used on surfaces than in solution. In this minireview, we discuss the photo-induced on-surface polymerization from the basic mechanisms of photochemistry to the formation of extended polymers on different kinds of surfaces, which are characterized by scanning probe microscopies.  相似文献   

10.
Scanning electrochemical microscopy is used to carry out local free‐radical grafting at a gold surface through mild oxidation of an aryl hydrazine. The process can be deliberately controlled by creation of a local pH gradient at the tip. Comparison of the experimental results with simulations shows that the radial expansion of the pH profile in which successful grafting can be accomplished increases with increasing generation time of OH? and with decreasing initial concentration of the grafting precursor. Furthermore, the radial expansion is faster than the nucleation of the grafting process.  相似文献   

11.
A major goal of heterogeneous catalysis is to optimize catalytic selectivity. Selectivity is often limited by the fact that most heterogeneous catalysts possess sites with a range of reactivities, resulting in the formation of unwanted by‐products. The construction of surface‐confined covalent organic frameworks (sCOFs) on catalytically active surfaces is a desirable strategy, as pores can be tailored to operate as catalytic nanoreactors. Direct modification of reactive surfaces is impractical, because the strong molecule–surface interaction precludes monomer diffusion and formation of extended architectures. Herein, we describe a protocol for the formation of a high‐quality sCOF on a Pd‐rich surface by first fabricating a porous sCOF through Ullmann coupling on a Au‐rich bimetallic surface on Pd(111). Once the sCOF has formed, thermal processing induces a Pd‐rich surface while preserving the integrity of the sCOF architecture, as evidenced by scanning tunneling microscopy and titration of Pd sites through CO adsorption.  相似文献   

12.
Patterning of glassy carbon surfaces grafted with a layer of nitrophenyl moieties was achieved by using the direct mode of scanning electrochemical microscopy (SECM) to locally reduce the nitro groups to hydroxylamine and amino functionalities. SECM and atomic force microscopy (AFM) revealed that potentiostatic pulses applied to the working electrode lead to local destruction of the glassy carbon surface, most likely caused by etchants generated at the positioned SECM tip used as the counter electrode. By applying galvanostatic pulses, and thus, limiting the current during structuring, corrosion of the carbon surface was substantially suppressed. After galvanostatic patterning, unambiguous proof of the formation of the anticipated amino moieties was possible by modulation of the pH value during the feedback mode of SECM imaging. This patterning strategy is suitable for the further bio‐modification of microstructured surfaces. Alkaline phosphatase, as a model enzyme, was locally bound to the modified areas, thus showing that the technique can be used for the development of protein microarrays.  相似文献   

13.
The rapid development of on-surface synthesis provides a unique approach toward the formation of carbon-based nanostructures with designed properties. Herein, we present the on-surface formation of CN-substituted phenylene vinylene chains on the Au(111) surface, thermally induced by annealing the substrate stepwise at temperatures between 220 °C and 240 °C. The reaction is investigated by scanning tunneling microscopy and density functional theory. Supported by the calculated reaction pathway, we assign the observed chain formation to a Knoevenagel condensation between an aldehyde and a methylene nitrile substituent.  相似文献   

14.
Cyclotrimerization‐induced chiral supramolecular structures of 4‐ethynyltriphenylamine (ETPA) have been synthesized on the Au(111) surface through alkyne‐based reactions. Whereas the ETPA molecules adsorbed on the Au(111) surface remain inert and form a close‐packed self‐assembled structure at room temperature, the combination of scanning tunneling microscopy observations and theoretical calculations unambiguously reveal that the ETPA molecules cyclotrimerize to form new trimer‐like species—1,3,5‐tris[4‐(diphenylamino)phenyl]benzene (TPAPB)—after annealing at 323 K. Further annealing drives these cyclotrimerized TPAPB molecules to form chiral hexagonal supramolecular structures with an extraordinary self‐healing ability.  相似文献   

15.
Low‐temperature scanning tunneling microscopy was used to follow the formation of a solvation shell around an adsorbed functionalized azo dye from the attachment of the first water molecule to a fully solvated molecule. Specific functional groups bind initially one water molecule each, which act as anchor points for additional water molecules. Further water attachment occurs in areas close to these functional groups even when the functional groups themselves are already saturated. In contrast, water molecules surround the hydrophobic parts of the molecule only when the two‐dimensional solvation shell closes around them. This study thus traces hydrophilic and hydrophobic properties of an organic molecule down to a sub‐molecular length scale.  相似文献   

16.
17.
18.
We combine density functional theory calculations and scanning tunneling microscopy investigations to identify the relevant chemical species and reactions in the nucleation phase of chemical vapor deposition. tert‐Butylphosphine (TBP) was deposited on a silicon substrate under conditions typical for surface functionalization and growth of semiconductor materials. On the activated hydrogen‐covered surface H/Si(001) it forms a strong covalent P?Si bond without loss of the tert‐butyl group. Calculations show that site preference for multiple adsorption of TBP is influenced by steric repulsion of the adsorbate's bulky substituent. STM imaging furthermore revealed an anisotropic distribution of TBP with a preference for adsorption perpendicular to the surface dimer rows. The adsorption patterns found can be understood by a mechanism invoking stabilization of surface hydrogen vacancies through electron donation by an adsorbate. The now improved understanding of nucleation in thin‐film growth may help to optimize molecular precursors and experimental conditions and will ultimately lead to higher quality materials.  相似文献   

19.
On‐surface synthesis is an emerging approach to obtain, in a single step, precisely defined chemical species that cannot be obtained by other synthetic routes. The control of the electronic structure of organic/metal interfaces is crucial for defining the performance of many optoelectronic devices. A facile on‐surface chemistry route has now been used to synthesize the strong electron‐acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para‐aminophenol precursors. The mechanism is described using a combination of in situ surface characterization techniques and theoretical methods. Owing to a strong surface‐molecule interaction, the quinoneazine molecule accommodates 1.2 electrons at its carbonyl ends, inducing an intramolecular charge redistribution and leading to partial conjugation of the rings, conferring azo‐character at the nitrogen sites.  相似文献   

20.
Ring any bells? The differential capacitance curve of Au(100) in neat [BMI]BF4 (BMI=1‐butyl‐3‐methylimidazolium) ionic liquid has a bell‐shaped feature (see picture). The adsorption of BMI+ shows a disorder–order transition and depends on the structure of the surface. Ordered adsorption in a micelle‐like structure stabilizes the underlying Au surface.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号