首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a programmable all-DNA biosensing system that centers on the use of a 4-way junction (4WJ) to transduce a DNAzyme reaction into an amplified signal output. A target acts as a primary input to activate an RNA-cleaving DNAzyme, which then cleaves an RNA-containing DNA substrate that is designed to be a component of a 4WJ. The formation of the 4WJ controls the release of a DNA output that becomes an input to initiate catalytic hairpin assembly (CHA), which produces a second DNA output that controls assembly of a split G-quadruplex as a fluorescence signal generator. The 4WJ can be configured to produce either a turn-off or turn-on switch to control the degree of CHA, allowing target concentration to be determined in a quantitative manner. We demonstrate this approach by creating a sensor for E. coli that could detect as low as 50 E. coli cells mL−1 within 85 min and offers an amplified bacterial detection method that does not require a protein enzyme.  相似文献   

2.
DNA three‐way junctions (DNA 3WJ) have been widely used as important building blocks for the construction of DNA architectures and dynamic assemblies. Herein, we describe for the first time a catalytic hairpin assembly‐programmed DNA three‐way junction (CHA‐3WJ) strategy for the enzyme‐free and amplified electrochemical detection of target DNA. It takes full advantage of the target‐catalyzed hairpin assembly‐induced proximity effect of toehold and branch‐migration domains for the ingenious execution of the strand displacement reaction to form the DNA 3WJ on the electrode surface. A low detection limit of 0.5 pM with an excellent selectivity was achieved for target DNA detection. The developed CHA‐3WJ strategy also offers distinct advantages of simplicity in probe design and biosensor fabrication, as well as enzyme‐free operation. Thus, it opens a promising avenue for applications in bioanalysis, design of DNA‐responsive devices, and dynamic DNA assemblies.  相似文献   

3.
Polymerase/nicking enzymes and nucleic‐acid scaffolds are implemented as DNA machines for the development of amplified DNA‐detection schemes, and for the design of logic gates. The analyte nucleic acid target acts, also, as input for the logic gates. In the presence of two DNA targets, acting as inputs, and appropriate DNA scaffolds, the polymerase‐induced replication of the scaffolds, followed by the nicking of the replication products, are activated, leading to the autonomous synthesis of the Mg2+‐dependent DNAzyme or the Mg2+‐dependent DNAzyme subunits. These biocatalysts cleave a fluorophore/quencher‐functionalized nucleic‐acid substrate, thus providing fluorescence signals for the sensing events or outputs for the logic gates. The systems are used to develop OR, AND, and Controlled‐AND gates, and the DNA‐analyte targets represent two nucleic acid sequences of the smallpox viral genome.  相似文献   

4.
The DNA nick repair catalyzed by DNA ligase is significant for fundamental life processes, such as the replication, repair, and recombination of nucleic acids. Here, we have employed ligase to regulate DNAzyme activity and developed a homogeneous, colorimetric, label‐free and DNAzyme‐based strategy to detect DNA ligase activity. This novel strategy relies on the ligation‐trigged activation or production of horseradish peroxidase mimicking DNAzyme that catalyzes the generation of a color change signal; this results in a colorimetric assay of DNA ligase activity. Using T4 DNA ligase as a model, we have proposed two approaches to demonstrate the validity of the DNAzyme strategy. The first approach utilizes an allosteric hairpin‐DNAzyme probe specifically responsive to DNA ligation; this approach has a wide detection range from 0.2 to 40 U mL?1 and a detection limit of 0.2 U mL?1. Furthermore, the approach was adapted to probe nucleic acid phosphorylation and single nucleotide mismatch. The second approach employs a “split DNA machine” to produce numerous DNAzymes after being reassembled by DNA ligase; this greatly enhances the detection sensitivity by a signal amplification cascade to achieve a detection limit of 0.01 U mL?1.  相似文献   

5.
Aiming at the detection of ultralow concentration target progesterone (Pro), a novel electrochemical aptasensor based on DNAzyme concatamers signal amplification strategy was proposed. The strategy consists of target DNA strands (TDNAs), and two different hairpin DNA molecules (H1 and H2). The signal is amplified by the large amount of DNAzyme. The TDNAs modified on the electrode open H1 structures in sequence and propagate a reaction of hybridization events between two alternating hairpins (H1and H2) to obtain abundant DNAzyme concatamers. Upon target Pro introduction, a specific Pro‐TDNAs reaction was executed, thereby resulting in the release of DNAzyme concatamers from the electrode. Subsequent differential pulse voltammetry(DPV) detection of aminoazobenzene (DAP) resulting by DNAzyme catalyze the oxidation of o‐phenylenediamine (OPD) with the aid of hydrogen peroxide (H2O2). Likewise, a small amount of target Pro can efficiently induce the release of a large number of the DNAzyme from the electrode in the form of DNAzyme concatamer. Under optimal conditions, the the proposed assay presents good electrochemical responses for determination of target Pro in the range of 0.5 to 15 ng/mL with the detection limit of 0.36 ng/mL. In addition, the resulting sensor can successfully distinguish Pro from coexisting interfering substance and show good stability and high repeatability. What's more, the methodology has also been demonstrated by assaying Pro‐spiked samples in serum.  相似文献   

6.
The therapeutic performance of DNAzyme-involved gene silencing is significantly constrained by inefficient conditional activation and insufficient cofactor supply. Herein, a self-sufficient therapeutic nanosystem was realized through the delicate design of DNAzyme prodrugs and MnO2 into a biocompatible nanocapsule with tumor-specific recognition/activation features. The indocyanine green (ICG)-modified DNA prodrugs are designed by splitting the DNAzyme and then reconstituted into the exquisite catalyzed hairpin assembly (CHA) amplification circuit. Based on the photothermal activation of ICG, the nanocapsule was disassembled to expose the MnO2 ingredient which was immediately decomposed into Mn2+ ions to supplement an indispensable DNAzyme cofactor on-demand with a concomitant O2 generation for enhancing the auxiliary phototherapy. The endogenous microRNA catalyzes the amplified assembly of DNA prodrugs via an exquisite CHA principle, leading to the DNAzyme-mediated simultaneous silencing of two key tumor-involved mRNAs. This self-activated theranostic nanocapsule could substantially expand the toolbox for accurate diagnosis and programmable therapeutics.  相似文献   

7.
Bioorthogonal control of metal‐ion sensors for imaging metal ions in living cells is important for understanding the distribution and fluctuation of metal ions. Reported here is the endogenous and bioorthogonal activation of a DNAzyme fluorescent sensor containing an 18‐base pair recognition site of a homing endonuclease (I‐SceI), which is found by chance only once in 7×1010 bp of genomic sequences, and can thus form a near bioorthogonal pair with I‐SceI for DNAzyme activation with minimal effect on living cells. Once I‐SceI is expressed inside cells, it cleaves at the recognition site, allowing the DNAzyme to adopt its active conformation. The activated DNAzyme sensor is then able to specifically catalyze cleavage of a substrate strand in the presence of Mg2+ to release the fluorophore‐labeled DNA fragment and produce a fluorescent turn‐on signal for Mg2+. Thus I‐SceI bioorthogonally activates the 10–23 DNAzyme for imaging of Mg2+ in HeLa cells.  相似文献   

8.
DNAzymes are a promising platform for metal ion detection, and a few DNAzyme‐based sensors have been reported to detect metal ions inside cells. However, these methods required an influx of metal ions to increase their concentrations for detection. To address this major issue, the design of a catalytic hairpin assembly (CHA) reaction to amplify the signal from photocaged Na+‐specific DNAzyme to detect endogenous Na+ inside cells is reported. Upon light activation and in the presence of Na+, the NaA43 DNAzyme cleaves its substrate strand and releases a product strand, which becomes an initiator that trigger the subsequent CHA amplification reaction. This strategy allows detection of endogenous Na+ inside cells, which has been demonstrated by both fluorescent imaging of individual cells and flow cytometry of the whole cell population. This method can be generally applied to detect other endogenous metal ions and thus contribute to deeper understanding of the role of metal ions in biological systems.  相似文献   

9.
10.
Multivalent carbohydrate–lectin interactions play a crucial role in bacterial infection. Biomimicry of multivalent glycosystems represents a major strategy in the repression of bacterial growth. In this study, a new kind of glycopeptide (Naphthyl‐Phe‐Phe‐Ser‐Tyr, NMY) scaffold with mannose modification is designed and synthesized, which is able to perform supramolecular self‐assembly with the assistance of catalytic enzyme, and present multiple mannose ligands on its self‐assembled structure to target mannose‐binding proteins. Relying on multivalent carbohydrate–lectin interactions, the glycopeptide hydrogel is able to bind Escherichia coli (E. coli) in high specificity, and result in bacterial adhesion, membrane disruption and subsequent cell death. In vivo wound healing assays reveal that this glycopeptide hydrogel exhibits considerable potentials for promoting wound healing and preventing E. coli infection in a full‐thickness skin defect mouse model. Therefore, through a specific mannose–lectin interaction, a biocompatible hydrogel with inherent antibacterial activity against E. coli is achieved without the need to resort to antibiotic or antimicrobial agent treatment, highlighting the potential role of sugar‐coated nanomaterials in wound healing and control of bacterial pathogenesis.  相似文献   

11.
Four‐way junctions (4WJs) are supramolecular DNA assemblies comprising four interacting DNA strands that in biology are involved in DNA‐damage repair. In this study, a new mononuclear platinum(II) complex 1 was prepared that is capable of driving the crystallization of the DNA oligomer 5′‐d(CGTACG)‐3′ specifically into a 4WJ‐like motif. In the crystal structure of the 1 –CGTACG adduct, the distorted‐square‐planar platinum complex binds to the core of the 4WJ‐like motif through π–π stacking and hydrogen bonding, without forming any platinum–nitrogen coordination bonds. Our observations suggest that the specific molecular properties of the metal complex are crucially responsible for triggering the selective assembly of this peculiar DNA superstructure.  相似文献   

12.
Human telomerase is a polymerase enzyme that adds tandem repeats of DNA (TTAGGG) in the telomeric region to the ends of chromosomes. Since telomerase can be detected in immortalized, but not normal, somatic cells, it has been considered a selective target for cancer chemotherapy. Here, we describe a DNAzyme‐based probe to detect the presence of telomerase in cell lysates. Telomerase elongates the primer site on the probe. Subsequent addition of the PbII cofactor activates the DNAzyme, which cleaves the elongated fragment at the RNA site, releasing the probe for repetitive cycling and signal amplification. The cleaved fragment is detected by a reporter molecular beacon. Enzymatic amplification with rapid turnover allows detection of telomerase in the range of 0.1 to 1 μg cell lysate, with a fivefold increase in signal level for cancer cells over normal cells. This probe design can provide a simple, yet rapid and sensitive, measurement of telomerase activity.  相似文献   

13.
Programmed self‐assembly of nucleic acids (DNA and RNA) is an active research area as it promises a general approach for nanoconstruction. Whereas DNA self‐assembly has been extensively studied, RNA self‐assembly lags much behind. One strategy to boost RNA self‐assembly is to adapt the methods of DNA self‐assembly for RNA self‐assembly because of the chemical and structural similarities of DNA and RNA. However, these two types of molecules are still significantly different. To enable the rational design of RNA self‐assembly, a thorough examination of their likes and dislikes in programmed self‐assembly is needed. The current work begins to address this task. It was found that similar, two‐stranded motifs of RNA and DNA lead to similar, but clearly different nanostructures.  相似文献   

14.
DNA nanostructured tiles play an active role in their own self‐assembly in the system described herein whereby they initiate a binding event that produces a cascading assembly process. We present DNA tiles that have a simple but powerful property: they respond to a binding event at one end of the tile by passing a signal across the tile to activate a binding site at the other end. This action allows sequential, virtually irreversible self‐assembly of tiles and enables local communication during the self‐assembly process. This localized signal‐passing mechanism provides a new element of control for autonomous self‐assembly of DNA nanostructures.  相似文献   

15.
Smart nanodevices that integrate molecular recognition and signal production hold great promise for the point‐of‐care (POC) diagnostic applications. Herein, the development of a DNA‐mediated proximity assembly of biochemical reactions, which was capable of sensing various bio‐targets and reporting easy‐to‐read signals is reported. The circuit was composed of a DNA hairpin‐locked catalytic cofactor with inhibited activity. Specific molecular inputs can trigger a conformational switch of the DNA locks through the mechanisms of toehold displacement and aptamer switching, exposing an active cofactor. The subsequent assembly of an enzyme/cofactor pair actuated a reaction to produce colorimetric or fluorescence signals for detecting target molecules. The developed system could be potentially applied to smart biosensing in molecular diagnostics and POC tests.  相似文献   

16.
DNAzymes have been recognized as potent therapeutic agents for gene therapy, while their inefficient intracellular delivery and insufficient cofactor supply precludes their practical biological applications. Metal–organic frameworks (MOFs) have emerged as promising drug carriers without in‐depth consideration of their disassembled ingredients. Herein, we report a self‐sufficient MOF‐based chlorin e6‐modified DNAzyme (Ce6‐DNAzyme) therapeutic nanosystem for combined gene therapy and photodynamic therapy (PDT). The ZIF‐8 nanoparticles (NPs) could efficiently deliver the therapeutic DNAzyme without degradation into cancer cells. The pH‐responsive ZIF‐8 NPs disassemble with the concomitant release of the guest DNAzyme payloads and the host Zn2+ ions that serve, respectively, as messenger RNA‐targeting agent and required DNAzyme cofactors for activating gene therapy. The auxiliary photosensitizer Ce6 could produce reactive oxygen species (ROS) and provide a fluorescence signal for the imaging‐guided gene therapy/PDT.  相似文献   

17.
Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three‐way‐junction (3WJ) pRNA, derived from ϕ 29 DNA packaging motor, shows strong mechanical anisotropy upon Mg2+ binding. In the absence of Mg2+, 3WJ‐pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg2+, the unfolding forces can differ by more than 4‐fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ‐pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ‐pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy.  相似文献   

18.
19.
We herein constructed a sensor that converts target DNA hybridization‐induced conformational transformation of the probe DNA to electrochemical response based on host‐guest recognition and nanoparticle label. In the sensor, the hairpin DNA terminal‐labeled with 4‐((4‐(dimethylamino)phenyl)azo)benzoic acid (dabcyl) and thiol group was immobilized on Au electrode surface as the probe DNA by Au‐S bond, and the CdS nanoparticles surface‐modified with β‐cyclodextrins (CdS‐CDs) were employed as electrochemical signal provider and host‐guest recognition element. Initially, the probe DNA immobilized on electrode kept the stem‐loop configuration, which shielded dabcyl from docking with the CdS‐CDs in solution due to the steric effect. After target hybridization, the probe DNA underwent a significant conformational change, which forced dabcyl away from the electrode. As a result, formerly‐shielded dabcyl became accessible to host‐guest recognition between β‐cyclodextrin (β‐CD) and dabcyl, thus the target hybridization event could be sensitively transduced to electrochemical signal provided by CdS‐CDs. This host‐guest recognition‐based electrochemical sensor has been able to detect as low as picomolar DNA target with excellent differentiation ability for even single mismatch.  相似文献   

20.
Programmed nucleic acid sequences undergo K+ ion‐induced self‐assembly into G‐quadruplexes and separation of the supramolecular structures by the elimination of K+ ions by crown ether or cryptand ion‐receptors. This process allows the switchable formation and dissociation of the respective G‐quadruplexes. The different G‐quadruplex structures bind hemin, and the resulting hemin–G‐quadruplex structures reveal horseradish peroxidase DNAzyme catalytic activities. The following K+ ion/receptor switchable systems are described: 1) The K+‐induced self‐assembly of the Mg2+‐dependent DNAzyme subunits into a catalytic nanostructure using the assembly of G‐quadruplexes as bridging unit. 2) The K+‐induced stabilization of the anti‐thrombin G‐quadruplex nanostructure that inhibits the hydrolytic functions of thrombin. 3) The K+‐induced opening of DNA tweezers through the stabilization of G‐quadruplexes on the “tweezers’ arms" and the release of a strand bridging the tweezers into a closed structure. In all of the systems reversible, switchable, functions are demonstrated. For all systems two different signals are used to follow the switchable functions (fluorescence and the catalytic functions of the derived hemin–G‐quadruplex DNAzyme).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号