首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triazole-based deubiquitylase (DUB)-resistant ubiquitin (Ub) probes have recently emerged as effective tools for the discovery of Ub chain-specific interactors in proteomic studies, but their structural diversity is limited. A new family of DUB-resistant Ub probes is reported based on isopeptide-N-ethylated dimeric or polymeric Ub chains, which can be efficiently prepared by a one-pot, ubiquitin-activating enzyme (E1)-catalyzed condensation reaction of recombinant Ub precursors to give various homotypic and even branched Ub probes at multi-milligram scale. Proteomic studies using label-free quantitative (LFQ) MS indicated that the isopeptide-N-ethylated Ub probes may complement the triazole-based probes in the study of Ub interactome. Our study highlights the utility of modern protein synthetic chemistry to develop structurally and new families of tool molecules needed for proteomic studies.  相似文献   

2.
Biochemical studies of cellular processes involving polyubiquitin have gained increasing attention. More tools are needed to identify ubiquitin (Ub)‐binding proteins. We report diazirine‐based photoaffinity probes that can capture Ub‐binding proteins in cell lysates, and show that diazirines are preferable to aryl azides as the photo‐crosslinking group, since they decrease non‐selective capture. Photoaffinity probes containing at least two Ub units were required to effectively capture Ub‐binding proteins. Different capture selectivity was observed for probes containing diubiquitin moieties with different types of linkages, thus indicating the potential to develop linkage‐dependent probes for selectively profiling Ub‐binding proteins under various cellular conditions.  相似文献   

3.
The development of powerful and general methods to acquire ubiquitin (Ub) chains has prompted the deciphering of Ub-mediated processes. Herein, the cysteine-aminoethylation assisted chemical ubiquitination (CAACU) strategy is extended and improved to enable the efficient semi-synthesis of atypical Ub chain analogues and Ub-based probes. Combining the Cys aminoethylation and the auxiliary-mediated protein ligation, several linkage- and length-defined atypical Ub chains including di-Ubs, K27C-linked tri-Ub, K11/K48C-branched tri-Ub, and even the SUMOlated Ub are successfully prepared from recombinantly expressed starting materials at about a 9–20 mg L−1 expression level. In addition, the utility of this strategy is demonstrated with the synthesis of a novel non-hydrolyzable di-Ub PA probe, which may provide a new useful tool for the mechanistic studies of deubiquitinase (DUB) recognition.  相似文献   

4.
Deubiquitinases (DUBs) are a family of enzymes that regulate the ubiquitin signaling cascade by removing ubiquitin from specific proteins in response to distinct signals. DUBs that belong to the metalloprotease family (metalloDUBs) contain Zn2+ in their active sites and are an integral part of distinct cellular protein complexes. Little is known about these enzymes because of the lack of specific probes. Described here is a Ub‐based probe that contains a ubiquitin moiety modified at its C‐terminus with a Zn2+ chelating group based on 8‐mercaptoquinoline, and a modification at the N‐terminus with either a fluorescent tag or a pull‐down tag. The probe is validated using Rpn11, a metalloDUB found in the 26S proteasome complex. This probe binds to metalloDUBs and efficiently pulled down overexpressed metalloDUBs from a HeLa cell lysate. Such probes may be used to study the mechanism of metalloDUBs in detail and allow better understanding of their biochemical processes.  相似文献   

5.
Chemical ubiquitination is an effective approach for accessing structurally defined, atypical ubiquitin (Ub) chains that are difficult to prepare by other techniques. Herein, we describe a strategy that uses a readily accessible premade isopeptide‐linked 76‐mer (isoUb), which has an N‐terminal Cys and a C‐terminal hydrazide, as the key building block to assemble atypical Ub chains in a modular fashion. This method avoids the use of auxiliary‐modified Lys and instead employs the canonical and therefore more robust Cys‐based native chemical ligation technique. The efficiency and capacity of this isoUb‐based strategy is exemplified by the cost‐effective synthesis of several linkage‐ and length‐defined atypical Ub chains, including K27‐linked tetra‐Ub and K11/K48‐branched tri‐, tetra‐, penta‐, and hexa‐Ubs.  相似文献   

6.
Ubiquitin (Ub) chain isopeptide bond mimics are useful molecules for biochemical and biophysical studies. Herein, we report the semi-synthesis of the disulfide-linked K11/K48-branched tri-Ub (Ub311/48(S–S)), the first example of an isopeptide mimic for the branched Ub chains, which have recently emerged as an interesting category of Ub modifications. Our strategy comprised the E1-dependent synthesis of the Ub conjugate of aminoethanethiol, followed by disulfide formation with Ub(K11C, K48C). The structure of the synthetic isopeptide bond mimics was verified by the crystal structure of Ub311/48(S–S). Deubiquitination and pulldown assays indicated that the synthetic Ub311/48(S–S) could be hydrolyzed by linkage-specific deubiquitinases (K11-specific Cezanne and K48-specific OTUB1), and recognized by proteasomal ubiquitin receptor S5a.  相似文献   

7.
The synthesis and evaluation as activity‐based probes (ABPs) of three configurationally distinct, fluorescent N‐alkyl cyclophellitol aziridine isosteres for profiling GH1 β‐glucosidase (GBA), GH27 α‐galactosidase (GLA) and GH29 α‐fucosidase (FUCA) is described. In comparison with the corresponding acyl aziridine ABPs reported previously, the alkyl aziridine ABPs are synthesized easily and are more stable in mild acidic and basic media, and are thus easier to handle. The β‐glucose‐configured alkyl aziridine ABP proves equally effective in labeling GBA as its N‐acyl counterpart, whereas the N‐acyl aziridines targeting GLA and FUCA outperform their N‐alkyl counterparts. Alkyl aziridines can therefore be an attractive alternative in retaining glycosidase ABP design, but in targeting a new retaining glycosidase both N‐alkyl and N‐acyl aziridines are best considered at the onset of a new study.  相似文献   

8.
Studying protein ubiquitination is difficult due to the complexity of the E1–E2–E3 ubiquitination cascade. Here we report the discovery that C-terminal ubiquitin thioesters can undergo direct transthiolation with the catalytic cysteine of the model HECT E3 ubiquitin ligase Rsp5 to form a catalytically active Rsp5∼ubiquitin thioester (Rsp5∼Ub). The resulting Rsp5∼Ub undergoes efficient autoubiquitination, ubiquitinates protein substrates, and synthesizes polyubiquitin chains with native Ub isopeptide linkage specificity. Since the developed chemical system bypasses the need for ATP, E1 and E2 enzymes while maintaining the native HECT E3 mechanism, we named it “Bypassing System” (ByS). Importantly, ByS provides direct evidence that E2 enzymes are dispensable for K63 specific isopeptide bond formation between ubiquitin molecules by Rsp5 in vitro. Additionally, six other E3 enzymes including Nedd4-1, Nedd4-2, Itch, and Wwp1 HECT ligases, along with Parkin and HHARI RBR ligases processed Ub thioesters under ByS reaction conditions. These findings provide general mechanistic insights on protein ubiquitination, and offer new strategies for assay development to discover pharmacological modulators of E3 enzymes.  相似文献   

9.
Multiple studies demonstrate that ubiquitination of proteins codes for regulation of cell differentiation, apoptosis, endocytosis and many other cellular functions. There is great interest in and considerable effort being given to defining the relationships between the structures of polyubiquitin modifications and the fates of the modified proteins. Does each ubiquitin modification achieve a specific effect, much like phosphorylation, or is ubiquitin like glycosylation, where there is heterogeneity and redundancy in the signal? The sensitive analytical tools needed to address such questions readily are not yet mature. To lay the foundation for mass spectrometry (MS)‐based studies of the ubiquitin code, we have assembled seven isomeric diubiquitins with all‐native sequences and isopeptide linkages. Using these compounds as standards enables the development and testing of a new MS‐based strategy tailored specifically to characterize the number and sites of isopeptide linkages in polyubiquitin chains. Here, we report the use of Asp‐selective acid cleavage, separation by reverse phase high‐performance liquid chromatography and characterization by tandem MS to distinguish and characterize all seven isomeric lysine‐linked ubiquitin dimers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
O‐Acyl isopeptides, in which the N‐acyl linkage on the hydroxyamino acid residue (e.g., Ser and Thr) is replaced with an O‐acyl linkage, generally possess superior water‐solubility to their corresponding native peptides, as well as other distinct physicochemical properties. In addition, O‐acyl isopeptides can be rapidly converted into their corresponding native peptide under neutral aqueous conditions through an O‐to‐N acyl migration. By exploiting these characteristics, researchers have applied the O‐acyl isopeptide method to various peptide‐synthesis fields, such as the synthesis of aggregative peptides and convergent peptide synthesis. This O‐acyl‐isopeptide approach also serves as a means to control the biological function of the peptide in question. Herein, we report the synthesis of O‐acyl isopeptides and some of their applications.  相似文献   

11.
Many biochemical pathways involving nerve growth factor (NGF), a neurotrophin with copper(II) binding abilities, are regulated by the ubiquitin (Ub) proteasome system. However, whether NGF binds Ub and the role played by copper(II) ions in modulating their interactions have not yet been investigated. Herein NMR spectroscopy, circular dichroism, ESI‐MS, and titration calorimetry are employed to characterize the interactions of NGF with Ub. NGF1–14, which is a short model peptide encompassing the first 14 N‐terminal residues of NGF, binds the copper‐binding regions of Ub (KD=8.6 10?5 m ). Moreover, the peptide undergoes a random coil–polyproline type II helix structural conversion upon binding to Ub. Notably, copper(II) ions inhibit NGF1–14/Ub interactions. Further experiments performed with the full‐length NGF confirmed the existence of a copper(II)‐dependent association between Ub and NGF and indicated that the N‐terminal domain of NGF was a valuable paradigm that recapitulated many traits of the full‐length protein.  相似文献   

12.
Deubiquitinases (DUBs) are a family of >100 proteases that hydrolyze isopeptide bonds linking ubiquitin to protein substrates, often leading to reduced substrate degradation through the ubiquitin proteasome system. Deregulation of DUB activity has been implicated in many diseases, including cancer, neurodegeneration and auto-inflammation, and several have been recognized as attractive targets for therapeutic intervention. Ubiquitin-derived covalent activity-based probes (ABPs) provide a powerful tool for DUB activity profiling, but their large recognition element impedes cellular permeability and presents an unmet need for small molecule ABPs which can account for regulation of DUB activity in intact cells or organisms. Here, through comprehensive chemoproteomic warhead profiling, we identify cyanopyrrolidine (CNPy) probe IMP-2373 ( 12 ) as a small molecule pan-DUB ABP to monitor DUB activity in physiologically relevant live cells. Through proteomics and targeted assays, we demonstrate that IMP-2373 quantitatively engages more than 35 DUBs across a range of non-toxic concentrations in diverse cell lines. We further demonstrate its application to quantification of changes in intracellular DUB activity during pharmacological inhibition and during MYC deregulation in a model of B cell lymphoma. IMP-2373 thus offers a complementary tool to ubiquitin ABPs to monitor dynamic DUB activity in the context of disease-relevant phenotypes.  相似文献   

13.
Ion mobility-mass spectrometry is used to study the new conformers of bovine ubiquitin (Ub) and the palladium(II) binding sites after the incubation with cis-[Pd(en)(H2O)2]2+ where en = ethylenediamine. Palladium(II) complexes are potentially useful proteomic reagents because they selectively bind to the side groups of methionine and histidine and hydrolytically cleave the peptide bond. Incubating 1.0 mM solution of Ub with 10.0 molar excess of cis-[Pd(en)(H2O)2]2+ results with one to four Pd2+ or Pd(en)2+ being attached to intact Ub and two conformer families at each of the 4+ to 11+ charge states. The 4+ and 5+ species exhibit a compact form, which is also observed in untreated Ub, and a new highly folded conformer. The 6+ to 10+ exhibit an elongated form, also observed in Ub, and a new partially folded conformer. The new conformers are shown to be more stable if they contain at least one Pd2+, rather than all Pd(en)2+. IM-MS/MS of [UbPd2en+5H]9+ shows that both the partially folded and elongated conformers first lose the en ligand, followed by dissociating into product ions that indicate that Met1, Glu51/Asp52, His68, and Glu16 are binding sites for Pd2+. These results suggest that Pd2+ is simultaneously binding to multiple side groups across different regions of Ub. This type of sequestering of Pd2+ probably reduces the efficiency of Pd2+ ions to selectively cleave Ub because it prevents Pd2+ anchoring to only Met or His and to an adjacent backbone amide nitrogen and forming the “activated complex” necessary for specific peptide bond cleavage.  相似文献   

14.
A series of new benzimidazolium chlorides bearing N,N′‐benzyl, 2,4,6‐trimethylbenzyl and 2,4,6‐triisopropylbenzyl substituents have been designed and synthesized from various o‐phenylenediamines. Subsequently, corresponding Cu‐based N‐heterocyclic carbenes (NHCs) were generated in situ in the reaction medium which represents a new application of NHCs exploiting distinct catalytic property towards intermolecular cyclization reaction cascade for the synthesis of 2‐aryl‐3‐(arylethynyl)quinoxalines from o‐phenylenediamines and terminal alkynes. The outcome of the cyclization reaction product depends upon the N,N′‐substituents present on the benzimidazolium chlorides.  相似文献   

15.
The Diels–Alder reaction is one of the most important C?C bond‐forming reactions in organic chemistry, and much effort has been devoted to controlling its enantio‐ and diastereoselectivity. The Diels–Alderase ribozyme (DAse) catalyses the reaction between anthracene dienes and maleimide dienophiles with multiple‐turnover, stereoselectivity, and up to 1100‐fold rate acceleration. Here, a new generation of anthracene‐BODIPY‐based fluorescent probes was developed to monitor catalysis by the DAse. The brightness of these probes increases up to 93‐fold upon reaction with N‐pentylmaleimide (NPM), making these useful tools for investigating the stereochemistry of the ribozyme‐catalysed reaction. With these probes, we observed that the DAse catalyses the reaction with >91 % de and >99 % ee. The stereochemistry of the major product was determined unambiguously by rotating‐frame nuclear Overhauser NMR spectroscopy (ROESY‐NMR) and is in agreement with crystallographic structure information. The pronounced fluorescence change of the probes furthermore allowed a complete kinetic analysis, which revealed an ordered bi uni type reaction mechanism, with the dienophile binding first.  相似文献   

16.
As a unique and unappreciated protein posttranslational modification, arginine N‐glycosylation was recently discovered to play an important role in the process that bacteria counteract host defenses. To provide chemical tools for further proteomic and biochemical studies on arginine N‐glycosylation, we report the first general strategy for a rapid and cost‐effective synthesis of glycopeptides carrying single or multiple arginine N‐GlcNAcyl groups. These glycopeptides were successfully utilized to generate the first antibodies that can specifically recognize arginine N‐GlcNAcylated peptides or proteins in a sequence‐independent manner.  相似文献   

17.
A new reciprocal π‐basic chiral stationary phase (CSP) was designed based on the reciprocity conception of chiral recognition and prepared starting from (S)‐leucine. The CSP thus prepared was applied in resolving various π‐acidic N‐(3,5‐dinitrobenzoyl)‐α‐amino amides and esters and found to be very effective. Especially, N‐(3,5‐dinitrobenzoyl)‐α‐amino N,N‐dialkyl amides were resolved very well on the new reciprocal CSP. From the chromatographic resolution results and based on the reciprocity conception of chiral recognition with the aid of Corey/Pauling/Koltan (CPK) molecular model studies, a chiral recognition mechanism which utilizes π‐π interaction and simultaneously two hydrogen bonding interactions between the CSP and the analyte has been proposed. The CSP prepared in this study was also successful in resolving 3,5‐dinitrophenylcarbamate derivatives of 2‐hydroxycarboxylic acid esters.  相似文献   

18.
A convenient synthetic method for N‐arylformamide derivatives was successfully developed by reacting α‐iodo‐N‐arylacetamides with formamide. This method was applicable to α‐iodo‐N‐arylacetamide substrates bearing electron‐donating or electron‐withdrawing groups, N‐(benzo[d][1,3]dioxol‐5‐yl)‐2‐iodoacetamide, 2‐iodo‐N‐(pyridin‐2‐yl)acetamide, and 2‐iodo‐N‐(naphthalen‐4‐yl)acetamide to give the corresponding N‐arylformamides in moderate to excellent yields (65–94%). A plausible mechanism was proposed to account for the new transformation.  相似文献   

19.
One route to high density and high performance energetic materials based on 1,2,4,5‐tetrazine is the introduction of 2,4‐di‐N‐oxide functionalities. Based on several examples and through theoretical analysis, the strategy of regioselective introduction of these moieties into 1,2,4,5‐tetrazines has been developed. Using this methodology, various new tetrazine structures containing the N‐oxide functionality were synthesized and fully characterized using IR, NMR, and mass spectroscopy, elemental analysis, and single‐crystal X‐ray analysis. Hydrogen peroxide (50 %) was used very effectively in lieu of the usual 90 % peroxide in this system to generate N‐oxide tetrazine compounds successfully. Comparison of the experimental densities of N‐oxide 1,2,4,5‐tetrazine compounds with their 1,2,4,5‐tetrazine precursors shows that introducing the N‐oxide functionality is a highly effective and feasible method to enhance the density of these materials. The heats of formation for all compounds were calculated with Gaussian 03 (revision D.01) and these values were combined with measured densities to calculate detonation pressures (P) and velocities (νD) of these energetic materials (Explo 5.0 v. 6.01). The new oxygen‐containing tetrazines exhibit high density, good thermal stability, acceptable oxygen balance, positive heat of formation, and excellent detonation properties, which, in some cases, are superior to those of 1,3,5‐tritnitrotoluene (TNT), 1,3,5‐trinitrotriazacyclohexane (RDX), and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX).  相似文献   

20.
Chemical methods for modifying proteins can enable studies aimed at uncovering biochemical function. Herein, we describe the use of thiol-ene coupling (TEC) chemistry to report on the function of branched (also referred to as forked) ubiquitin trimers. We show how site-specific isopeptide (Nε-Gly-L-homothiaLys) bonds are forged between two molecules of Ub, demonstrating the power of TEC in protein conjugation. Moreover, we demonstrate that the Nε-Gly-L-homothiaLys isopeptide bond is processed to a similar extent by deubiquitinases (DUBs) as that of a native Nε-Gly-L-Lys isopeptide bond, thereby establishing the utility of TEC in the generation of Ub-Ub linkages. TEC is then applied to the synthesis of branched Ub trimers. Interrogation of these branched derivatives with DUBs reveals that the relative orientation of the two Ub units has a dramatic impact on how they are hydrolyzed. In particular, cleavage of K48C-linkages is suppressed when the central Ub unit is also conjugated through K6C, whereas cleavage proceeds normally when the central unit is conjugated through either K11C or K63C. The results of this work presage a role for branched polymeric Ub chains in regulating linkage-selective interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号