首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Nucleic acids play a pivotal role in life processes. The endeavours to shed light on the essential properties of these intriguing building blocks led us to the synthesis of different analogues and the investigation of their properties. First various peptide nucleic acid monomers and oligomers have been synthesized, using an Fmoc/acyl protecting group strategy, and their properties studied. The serendipitous discovery of a side reaction of coupling agents led us to the elaboration of a peptide sequencing method. The capricious behaviour of guanine derivatives spurred the determination of their substitution pattern using 13C, 15N NMR, and mass spectrometric methods. The properties of guanines initiated the logical transition to the study of supramolecular systems composed of purine analogues. Thus, xanthine and uracil derivatives have been obtained and their supramolecular self-assembly properties scrutinized in gas, solid, and liquid states and at solid-liquid interfaces.  相似文献   

3.
4.
Researchers increasingly visualize a significant role for artificial biochemical logical systems in biological engineering, much like digital logic circuits in electrical engineering. Those logical systems could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expression in vivo. Nucleic acids (NA), as carriers of genetic information with well‐regulated and predictable structures, are promising materials for the design and engineering of biochemical circuits. A number of logical devices based on nucleic acids (NA) have been designed to handle various processes for technological or biotechnological purposes. This article focuses on the most recent and important developments in NA‐based logical devices and their evolution from in vitro, through cellular, even towards in vivo biological applications.  相似文献   

5.
Tellurium was successfully incorporated into proteins and applied to protein structure determination through X-ray crystallography. However, studies on tellurium modification of DNA and RNA are limited. This review highlights the recent development of Te-modified nucleosides, nucleotides, and nucleic acids, and summarizes the main synthetic approaches for the preparation of 5-PhTe, 2′-MeTe, and 2′-PhTe modifications. Those modifications are compatible with solid-phase synthesis and stable during Te-oligonucleotide purification. Moreover, the ideal electronic and atomic properties of tellurium for generating clear isomorphous signals give Te-modified DNA and RNA great potential applications in 3D crystal structure determination through X-ray diffraction. STM study also shows that Te-modified DNA has strong topographic and current peaks, which immediately suggests potential applications in nucleic acid direct imaging, nanomaterials, molecular electronics, and diagnostics. Theoretical studies indicate the potential application of Te-modified nucleosides in cancer therapy.  相似文献   

6.
7.
张涛  陈凡  盖青青  屈锋  张玉奎 《化学进展》2011,23(10):2132-2139
离子液因其具有良好的生物兼容性和独特的理化性质,近年来在生物催化和生物大分子蛋白质与核酸的分离分析领域得到广泛应用。离子液与生物大分子相互作用的研究是离子液相关理论与应用研究的基础,有关离子液与蛋白质和核酸相互作用的机理研究受到关注。本文简要介绍了常用离子液的分类,离子液与蛋白质分子作用的机理,离子液与核酸分子作用的机理,以及离子液在酶催化反应、生物分子分离、生物分子电化学分析和毛细管电泳分析中的应用,并主要综述了近年的相关研究和应用进展。  相似文献   

8.
9.
All of the four nucleobases in DNA have replaced the 4‐hydroxy group of N‐[2‐(tert‐butoxycarbonylaminomethyl)‐trans‐4‐hydroxy] tetrahydropyrrole acetic acid methyl ester with cis ‐stereochemistry. An efficient route for the synthesis of N‐[2‐(tert‐butoxycarbonylaminomethyl)‐trans‐4‐hydroxy]‐tetrahydropyrrole acetic acid methyl ester has been developed. Starting with this intermediate, the protected monomers were synthesized by the Mitsunobu reaction or via its tosylate.  相似文献   

10.
Nucleic acid amplification tests (NAATs)integrated on a chip hold great promise for point-of-care diagnostics. Currently, nucleic acid (NA) purification remains time-consuming and labor-intensive, and it takes extensive efforts to optimize the amplification chemistry. Using selective electrokinetic concentration, we report one-step, liquid-phase NA purification that is simpler and faster than conventional solid-phase extraction. By further re-concentrating NAs and performing polymerase chain reaction (PCR) in a microfluidic chamber, our platform suppresses non-specific amplification caused by non-optimal PCR designs. We achieved the detection of 5 copies of M. tuberculosis genomic DNA (equaling 0.3 cell) in real biofluids using both optimized and non-optimal PCR designs, which is 10- and 1000-fold fewer than those of the standard bench-top method, respectively. By simplifying the workflow and shortening the development cycle of NAATs, our platform may find use in point-of-care diagnosis.  相似文献   

11.
Cyanuric acid (CA), a triazine heterocycle, is extensively utilized for noncovalent self-assembly. The association between poly(adenine) and CA into micron-length fibers was a remarkable observation made by Sleiman and co-workers, who proposed that adenine and CA adopt a hexameric rosette configuration in analogy with previously reported structures for CA assemblies. However, recent experimental observations from the Krishnamurthy group led to a reevaluation of the hexameric rosette model, wherein they have proposed a hydrogen-bonded helicene model as an alternative. Our molecular dynamics simulations show that the hexad model is indeed unlikely and that this novel noncovalent helicene geometry, where the adenine and CA bases form an extended helical hydrogen-bond network across the system, is a more probable structural motif. The existence of noncovalent helicene compounds may have wide-ranging applications in DNA nanotechnology and helicene chemistry.  相似文献   

12.
The stabilities of duplexes formed by strands of novel artificial nucleic acids composed of acyclic threoninol nucleic acid (aTNA) and serinol nucleic acid (SNA) building blocks were compared with duplexes formed by the acyclic glycol nucleic acid (GNA), peptide nucleic acid (PNA), and native DNA and RNA. All acyclic nucleic acid homoduplexes examined in this study had significantly higher thermal stability than DNA and RNA duplexes. Melting temperatures of homoduplexes were in the order of aTNA>PNA≈GNA≥SNA?RNA>DNA. Thermodynamic analyses revealed that high stabilities of duplexes formed by aTNA and SNA were due to large enthalpy changes upon formation of duplexes compared with DNA and RNA duplexes. The higher stability of the aTNA homoduplex than the SNA duplex was attributed to the less flexible backbone due to the methyl group of D ‐threoninol on aTNA, which induced clockwise winding. Unlike aTNA, the more flexible SNA was able to cross‐hybridize with RNA and DNA. Similarly, the SNA/PNA heteroduplex was more stable than the aTNA/PNA duplex. A 15‐mer SNA/RNA was more stable than an RNA/DNA duplex of the same sequence.  相似文献   

13.
稀土氨基酸配合物与核酸的相互作用*   总被引:4,自引:0,他引:4  
很多抗癌金属药物是以核酸为靶标。阐明小分子与核酸之间的相互作用对筛选具有高效选择性和低毒副作用的抗癌药物有重要意义。近年来,开发新型的具有对核酸序列特异性识别能力的抗癌药物己成为本领域的研究热点。稀土离子具有良好的磁学、光学、电学特性和配位能力,使稀土配合物成为新型药物试剂。然而,稀土离子在中性条件下易水解的特性极大地阻碍了稀土配合物对核酸分子识别的研究。近年来在近生理条件下合成的一系列镧系氨基酸配合物具有结构稳定、溶解性好等优点,解决了镧系离子易水解的问题。本文总结了目前关于镧系氨基酸配合物与核酸的相互作用及其序列选择性等方面的研究进展。  相似文献   

14.
15.
桂珍  严枫  李金昌  葛梦圆  鞠熀先 《化学进展》2015,27(10):1448-1458
分子信标是一种荧光探针,闭合时呈发夹结构。其5'末端修饰荧光基团,3'末端修饰猝灭基团。当目标存在时,环部与目标结合,发夹打开,发出荧光。锁核酸是一类双环状寡核苷酸衍生物,能够遵循碱基互补配对原则与核酸结合。锁核酸分子信标技术,结合了分子信标无需分离未结合探针而直接检测的优势和锁核酸亲合力强、热稳定性好、抗酶切以及体内无毒等特点,在核酸检测方面具有灵敏度高、特异性好的独特优势,近年来得到广泛关注。本文介绍了锁核酸修饰分子信标的结构、功能、设计要点,及其研究现状和一些重要进展,并讨论了目前锁核酸分子信标在分子识别及生物分析中的应用及存在的问题和发展前景。  相似文献   

16.
Weak ligand–receptor recognition events are often amplified by recruiting multiple regulatory biomolecules to the action site in biological systems. However, signal amplification in in vitro biomimetic systems generally lack the spatiotemporal regulation in vivo. Herein we report a framework nucleic acid (FNA)‐programmed strategy to develop valence‐controlled signal amplifiers with high modularity for ultrasensitive biosensing. We demonstrated that the FNA‐programmed signal amplifiers could recruit nucleic acids, proteins, and inorganic nanoparticles in a stoichiometric manner. The valence‐controlled signal amplifier enhanced the quantification ability of electrochemical biosensors, and enabled ultrasensitive detection of tumor‐relevant circulating free DNA (cfDNA) with sensitivity enhancement of 3–5 orders of magnitude and improved dynamic range.  相似文献   

17.
The need for routine and immediate healthcare monitoring has inspired “near-patient testing” or in other words “point-of-care testing (POCT)”. Therefore, POCT can be defined as laboratory tests that are performed at the patient's bedside or in the immediate vicinity of the incident. Among many POCTs, nucleic acid-based testing has attracted enormous attention for the diagnosis of important genetic, inherited and infectious diseases such as cancer and coronavirus. In this review, we outline the integration of nucleic acids into the remarkable electrochemical point-of-care diagnostics including microfluidic, paper and smartphone-based approaches, CRISPR/Cas and liquid biopsy related systems and DNA damage monitoring.  相似文献   

18.
Only two nucleic acid directed chemical reactions that are compatible with live cells have been reported to date. Neither of these processes generate toxic species from nontoxic starting materials. Reactions of the latter type could be applied as gene‐specific drugs, for example, in the treatment of cancer. We report here the first example of a chemical reaction that generates a cytotoxic drug from a nontoxic prodrug in the presence of a specific endogeneous ribonucleic acid in live mammalian cells. In this case, the prodrug is triplet oxygen and the drug is singlet oxygen. The key component of this reaction is an inert molecule (InP–2′‐OMe‐RNA/Q–2′‐OMe‐RNA; P: photosensitizer; Q: quencher), which becomes an active photosensitizer (InP–2′‐OMe‐RNA) in the presence of single‐stranded nucleic acid targets. Upon irradiation with red light, the photosensitizer produces over 6000 equivalents of toxic singlet oxygen per nucleic acid target. This reaction is highly sequence specific. To detect the generation of singlet oxygen in live cells, we prepared a membrane‐permeable and water‐soluble fluorescent scavenger, a derivative of 2,5‐diphenylisobenzofurane. The scavenger decomposes upon reaction with singlet oxygen and this is manifested in a decrease in the fluorescence intensity. This effect can be conveniently monitored by flow cytometry.  相似文献   

19.
20.
Molecular compounds featuring nitrogen atoms are typically regarded as Lewis bases and are extensively employed as donor ligands in coordination chemistry or as nucleophiles in organic chemistry. By contrast, electrophilic nitrogen‐containing compounds are much rarer. Nitrenium cations are a new family of nitrogen‐based Lewis acids, the reactivity of which remains largely unexplored. In this work, nitrenium ions are explored as catalysts in five organic transformations. These reactions are the first examples of Lewis acid catalysis employing nitrogen as the site of substrate activation. Moreover, these compounds are readily accessed from commercially available reagents and exhibit remarkable stability toward moisture, allowing for benchtop transformations without the need to pretreat solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号