首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《化学:亚洲杂志》2017,12(15):1861-1864
Porphyrin‐based molecules have been widely used in dye‐sensitized solar cells and bulk heterojunction solar cells, but their application in field‐effect transistors (FETs) is limited. In this work, two conjugated polymers based on diketopyrrolopyrrole and porphyrin units were developed for FETs. The polymers exhibit extra‐low band gap with energy levels close to −4.0 eV and −5.0 eV due to the strong electron‐donating and withdrawing ability of porphyrin and diketopyrrolopyrrole. With additionally high crystalline properties, ambipolar charge carrier transports with a hole mobility of 0.1 cm2 V−1 s−1 in FETs were realized in these polymers, representing the highest performance in solution‐processed FETs based on porphyrin unit.  相似文献   

2.
The effect of the presence of hexyl group in thiophene on the photophysical and electrochemical properties of poly[(9,9‐dioctyluorene)?2,7‐diyl‐alt‐(4,7‐bis(3‐hexylthien‐5‐yl)?2,1,3‐benzothiadiazole)?2′,2″‐diyl] (F8TBT) is investigated. The copolymers present electron donor–acceptor architecture and are synthesized by Suzuki coupling reaction. The UV/Vis spectra show absorption maximum in the wavelength range of blue and orange, which are associated with different segments of the polymer backbone. Addition of hexyl substituent groups has a positive effect on the molar absorptivity and increases the emission and absorption intensities due to fluorene and thiophene‐benzothiadiazole‐thiophene (TBT) units, although an increment in the bandgap is observed. Cyclic voltammetry study of the polymer films reveal irreversible reduction and oxidation processes of the TBT units in the polymer chain and the HOMO and LUMO energy levels suggest ambipolar character for the polymers, while the electrochemical bandgaps are consistent with the absorbance measurements. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1975–1982  相似文献   

3.
Summary: The thiophene‐quinoxaline donor–acceptor conjugated copolymer poly[(thiophene‐2,5‐diyl‐alt‐(2,3‐diheptylquinoxaline‐5,8‐diyl)] (PTHQx) was explored as a semiconductor in thin‐film organic field‐effect transistors (OFETs). A hole mobility of 3.6 × 10−3 cm2 · V−1 · s−1 and an on/off current ratio of 6 × 105 were observed in p‐channel OFETs made from spin‐coated PTHQx thin films. The electronic structures of PTHQx and a related thiophene‐thienopyrazine donor–acceptor copolymer were calculated by density functional theory. Atomic force microscopy of PTHQx thin films showed a polycrystalline grain morphology that varied with the substrate.

Output (left) and transfer (right) characteristics of a PTHQx (structure shown) organic field‐effect transistor.  相似文献   


4.
顾世磊  王琳  赵吉寿  黎静 《化学通报》2016,79(9):817-821
本文介绍了一种含有1,4-二酮吡咯并吡咯和铂的金属有机共轭聚合物。通过紫外-可见吸收光谱及电化学测得该聚合物的LUMO和HOMO分别为-3.4e V和-5.3e V。通过旋涂方法制备了该材料的底栅底接触场效应器件,并在退火至160℃之后测得其最高性能为:空穴迁移率1.0×10-3cm2·V-1·s-1,开关比105,阈值电压-15V。同时,通过原子力显微镜和X射线衍射对材料薄膜的退火过程进行了研究。  相似文献   

5.
Three new organic semiconductors, in which either two methoxy units are directly linked to a dibenzotetrathiafulvalene (DB‐TTF) central core and a 2,1,3‐chalcogendiazole is fused on the one side, or four methoxy groups are linked to the DB‐TTF, have been synthesised as active materials for organic field‐effect transistors (OFETs). Their electrochemical behaviour, electronic absorption and fluorescence emission as well as photoinduced intramolecular charge transfer were studied. The electron‐withdrawing 2,1,3‐chalcogendiazole unit significantly affects the electronic properties of these semiconductors, lowering both the HOMO and LUMO energy levels and hence increasing the stability of the semiconducting material. The solution‐processed single‐crystal transistors exhibit high performance with a hole mobility up to 0.04 cm2 V?1 s?1 as well as good ambient stability.  相似文献   

6.
It is very important to develop ambipolar field effect transistors to construct complementary circuits. To obtain balanced hole‐ and electron‐transport properties, one of the key issues is to regulate the energy levels of the frontier orbitals of the semiconductor materials by structural tailoring, so that they match well with the electrode Fermi levels. Five conjugated copolymers were synthesized and exhibited low LUMO energy levels and narrow bandgaps on account of the strong electron‐withdrawing effect of the carbonyl groups. Polymer thin film transistors were prepared by using a solution method and exhibited high and balanced hole and electron mobility of up to 0.46 cm2 V?1 s?1, which suggested that these copolymers are promising ambipolar semiconductor materials.  相似文献   

7.
Two diketopyrrolopyrrole (DPP)‐based donor–acceptor (D–A) conjugated molecules, DPP‐F and DPP‐2F, which contain E‐(1,2‐difluorovinyl) moieties, are reported. The LUMO energies of DPP‐F and DPP‐2F were estimated to be ?3.49 and ?3.70 eV, respectively, based on their redox potentials and absorption spectral data; these values were clearly lowered because of the incorporation of electron‐withdrawing E‐(1,2‐difluorovinyl) moieties. Organic field‐effect transistors (OFETs) with thin films of DPP‐F and DPP‐2F were successfully fabricated with conventional techniques. Based on the respective transfer and output characteristics measured in an inert atmosphere, thin films of DPP‐2F display ambipolar semiconducting behavior with hole and electron mobilities reaching 0.42 and 0.80 cm2 V?1 s?1, respectively. The as‐prepared OFET of DPP‐2F already shows high hole and electron mobilities that are not influenced remarkably by thermal annealing. For thin films of DPP‐F, only p‐type semiconducting behavior was observed in both an inert atmosphere and air, and the hole mobility increased to 0.1 cm2 V?1 s?1 after thermal annealing. XRD and AFM studies were performed with thin films of DPP‐F and DPP‐2F after annealing at different temperatures.  相似文献   

8.
Herein, we report the synthesis, characterization, and field‐effect properties of two cross‐conjugated dithienylmethanone (DMO)‐based alternating polymers, namely, PDMO‐S and PDMO‐Se . Both polymers possess high thermal stability, good solubility, and broad absorption spectra. Their electrochemical properties were investigated using cyclic voltammetry, indicating that PDMO‐Se has higher HOMO/LUMO energy levels of −5.49/−3.49 eV than −5.57/−3.58 eV of PDMO‐S . The two polymers exhibited promising charge transport properties with the highest hole mobility of 0.12 cm2 V−1 s−1 for PDMO‐S and 0.025 cm2 V−1 s−1 for PDMO‐Se . AFM and 2D‐GIXRD analyses demonstrated that the PDMO‐S formed lamellar, edge‐on packing thin film with close ππ stacking. These findings suggest that cross‐conjugated polymers might be potential semiconducting materials for low‐cost and flexible organic electronics. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1012–1019  相似文献   

9.
10.
11.
12.
The gate surfaces of ion‐sensitive field‐effect transistor (ISFET) devices were functionalized with the π‐donor units, 6‐hydroxydopamine ( 1 ) or 4‐aminothiophenol ( 2 ). Concentration of trinitrotoluene, TNT, on the gate via π‐donor‐acceptor interactions yields charge‐transfer complexes that alter the gate potential. This enables the label‐free analysis of TNT with a detection limit corresponding to 1×10?7 M.  相似文献   

13.
Three soluble and stable thienoacene‐fused pentalene derivatives ( 1 – 3 ) with different π‐conjugation lengths were synthesized. X‐ray crystallographic analysis and density functional theory (DFT) calculations revealed their unique geometric and electronic structures due to the interaction between the aromatic thienoacene units and antiaromatic pentalene moiety. As a result, they all possess a small energy gap and show amphoteric redox behaviour. Time dependent (TD) DFT calculations were used to explain their unique electronic absorption spectra. These new compounds exhibited good thermal stability and ordered packing in solid state and thus their applications in organic field‐effect transistors (OFETs) were also investigated. The highest field‐effect hole mobility of 0.016, 0.036 and 0.001 cm2 V?1 s?1 was achieved for solution‐processed thin films of 1 – 3 , respectively.  相似文献   

14.
Multifunctional nanomaterials with simultaneous therapeutic and imaging functions explore new strategies for the treatment of various diseases. Conjugated polymers (CPs) are considered as novel candidates to serve as multifunctional delivery systems due to their high fluorescence quantum yield, good photostability, and low cytotoxicity. Highly sensitive sensing and imaging properties of CPs are well reviewed, while the applications of CPs as delivery systems are rarely covered. This feature article mainly focuses on CP‐based multifunctional non‐viral delivery systems for drug, protein, gene, and cell delivery. Promising directions for the further development of CP‐based delivery systems are also discussed.

  相似文献   


15.
16.
DTfBT‐Th3, a new conjugated polymer based on dithienobenzothiadiazole and terthiophene, possesses a bandgap of ≈1.86 eV and a HOMO level of −5.27 eV. Due to strong interchain aggregation, DTfBT‐Th3 can not be well dissolved in chloro­benzene (CB) and o‐dichlorobenzene (DCB) at room temperature (RT), but the polymer can be processed from hot CB and DCB solutions of ≈100 °C. In CB, with a lower solvation ability, a certain polymer chain aggregation can be preserved, even in hot solution. DTfBT‐Th3 displays a field‐effect hole mobility of 0.55 cm2 V−1 s−1 when fabricated from hot CB solution, which is higher than that of the device processed from hot DCB (0.16 cm2 V−1 s−1). In DTfBT‐Th3‐based polymer solar cells, a good power conversion efficiency from 5.37% to 6.67% can be achieved with 150−300 nm thick active layers casted from hot CB solution, while the highest efficiency for hot DCB‐processed solar cells is only 5.07%. The results demonstrate that using a solvent with a lower solvation ability, as a “wet control” process, is beneficial to preserve strong interchain aggregation of a conjugated polymer during solution processing, showing great potential to improve its performances in optoelectronic devices.

  相似文献   


17.
《Electroanalysis》2004,16(22):1853-1862
As modern electronics rapidly approach the ultimate level of integration (typically thought to be at the nanoscale level), the fascinating world of biomolecules provides new opportunities and directions for further miniaturization. In this work we review our results in the field of biomolecular electronics, starting from the fabrication of nanojunctions up to the implementation of hybrid devices.  相似文献   

18.
Controlling light‐induced accumulation of electrons or holes is desirable in view of multi‐electron redox chemistry, for example for the formation of solar fuels or for photoredox catalysis in general. Excitation with multiple photons is usually required for electron or hole accumulation, and consequently pump‐pump‐probe spectroscopy becomes a valuable spectroscopic tool. In this work, we excited a triarylamine‐Ru(bpy)32+‐anthraquinone triad (bpy = 2,2′‐bipyridine) with two temporally delayed laser pulses of different color and monitored the resulting photoproducts. Absorption of the first photon by the Ru(bpy)32+ photosensitizer generated a triarylamine radical cation and an anthraquinone radical anion by intramolecular electron transfer. Subsequent selective excitation of either one of these two radical ion species then induced rapid reverse electron transfer to yield the triad in its initial (ground) state. This shows in direct manner that after absorption of a first photon and formation of the primary photoproducts, the absorption of a second photon can lead to unproductive electron transfer events that counteract further charge accumulation. In principle, this problem is avoidable by careful excitation wavelength selection in combination with good molecular design.  相似文献   

19.
A series of new highly soluble bispyrrolothiophenes were synthesized from vinyl azides by using transition‐metal‐catalyzed C?H‐bond functionalization. In addition to modifying the substituents present on the end‐pyrrolothiophene moieties, the arene linker in between the two units was also varied. The solution‐state properties and field‐effect‐transistor (FET) electrical behavior of these bispyrrolothiophenes was compared. Our investigations identified that the optical properties and oxidation potential of our compounds were dominated by the pyrrolothiophene unit with a λmax value of approximately 400 nm and oxidation at approximately 1 V. FET devices constructed with thin films of these bispyrrolothiophenes were also fabricated by means of thin‐film solution processing. One of these compounds, a bispyrrolothiophene linked with benzothiodiazole, exhibits a mobility of approximately 0.3 cm2 V?1 s?1 and the Ion/Ioff value is greater than 106.  相似文献   

20.
A new acceptor–donor–acceptor (A–D–A) small molecule based on benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) is synthesized via a Stille cross‐coupling reaction. A highly conjugated selenophene‐based side group is incorporated into each BDT unit to generate a 2D soluble small molecule (SeBDT‐DPP). SeBDT‐DPP thin films produce two distinct absorption peaks. The shorter wavelength absorption (400 nm) is attributed to the BDT units containing conjugated selenophene‐based side groups, and the longer wavelength band is due to the intramolecular charge transfer between the BDT donor and the DPP acceptor. SeBDT‐DPP thin films can harvest a broad solar spectrum covering the range 350–750 nm and have a low bandgap energy of 1.63 eV. Solution‐processed field‐effect transistors fabricated with this small molecule exhibit p‐type organic thin film transistor characteristics, and the field‐effect mobility of a SeBDT‐DPP device is measured to be 2.3 × 10−3 cm2 V−1 s−1. A small molecule solar cell device is prepared by using SeBDT‐DPP as the active layer is found to exhibit a power conversion efficiency of 5.04% under AM 1.5 G (100 mW cm−2) conditions.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号