首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lead‐free zero‐dimensional (0D) organic‐inorganic metal halide perovskites have recently attracted increasing attention for their excellent photoluminescence properties and chemical stability. Here, we report the synthesis and characterization of an air‐stable 0D mixed metal halide perovskite (C8NH12)4Bi0.57Sb0.43Br7?H2O, in which individual [BiBr6]3? and [SbBr6]3? octahedral units are completely isolated and surrounded by the large organic cation C8H12N+. Upon photoexcitation, the bulk crystals exhibit ultra‐broadband emission ranging from 400 to 850 nm, which originates from both free excitons and self‐trapped excitons. This is the first example of 0D perovskites with broadband emission spanning the entire visible spectrum. In addition, (C8NH12)4Bi0.57Sb0.43Br7?H2O exhibits excellent humidity and light stability. These findings present a new direction towards the design of environmentally‐friendly, high‐performance 0D perovskite light emitters.  相似文献   

2.
Published studies of layered (2D) (100)‐oriented hybrid lead‐bromide perovskites evidence a correlation between increased inter‐octahedral (Pb‐Br‐Pb) distortions and the appearance of broadband white light emission. However, the impact of distortions within their constituent [PbBr6]4? octahedra has yet to be assessed. Herein, we report two new (100)‐oriented 2D Pb‐Br perovskites, whose structures display unusually high intra‐octahedral distortions, whilst retaining minimal inter‐octahedral distortions. Using a combination of temperature‐dependent, power‐dependent and time‐resolved photoluminescence spectroscopic measurements, we show that increased intra‐octahedral distortion induces exciton localization processes and leads to formation of multiple photoinduced emissive colour centres. Ultimately, this leads to highly Stokes‐shifted, ultrabroad white light emission at room temperature.  相似文献   

3.
Two‐dimensional (2D) hybrid perovskites have shown many attractive properties associated with their soft lattices and multiple quantum well structure. Herein, we report the synthesis and characterization of two new multifunctional 2D hybrid perovskites, (PED)CuCl4 and (BED)2CuCl6, which show reversible thermochromic behavior, dramatic temperature‐dependent conductivity change, and strong ferromagnetism. Upon temperature change, the (PED)CuCl4 and (BED)2CuCl6 crystals exhibit a reversible color change between yellow and red‐brown. The associated structural changes were monitored by in situ temperature‐dependent powder X‐ray diffraction (PXRD). The (BED)2CuCl6 exhibits superior thermal stability, with a thermochromic working temperature up to 443 K. The conductivity of (BED)2CuCl6 changes over six orders of magnitude upon temperature change. The 2D perovskites exhibit ferromagnetic properties with Curie temperatures around 13 K.  相似文献   

4.
Published studies of layered (2D) (100)-oriented hybrid lead-bromide perovskites evidence a correlation between increased inter-octahedral (Pb-Br-Pb) distortions and the appearance of broadband white light emission. However, the impact of distortions within their constituent [PbBr6]4− octahedra has yet to be assessed. Herein, we report two new (100)-oriented 2D Pb-Br perovskites, whose structures display unusually high intra-octahedral distortions, whilst retaining minimal inter-octahedral distortions. Using a combination of temperature-dependent, power-dependent and time-resolved photoluminescence spectroscopic measurements, we show that increased intra-octahedral distortion induces exciton localization processes and leads to formation of multiple photoinduced emissive colour centres. Ultimately, this leads to highly Stokes-shifted, ultrabroad white light emission at room temperature.  相似文献   

5.
We report a family of cationic lead halide layered materials, formulated as [Pb2X2]2+[O2C(CH)2CO2] (X=F, Cl, Br), exhibiting pronounced broadband white‐light emission in bulk form. These well‐defined PbX‐based structures achieve an external quantum efficiency as high as 11.8 %, which is comparable to the highest reported value (ca.9 %) for broadband phosphors based on layered organolead halide perovskites. More importantly, our cationic materials are ultrastable lead halide materials, which overcome the air/moisture‐sensitivity problems of lead perovskites. In contrast to the perovskites and other bulk emitters, the white‐light emission intensity of our materials remains undiminished after continuous UV irradiation for 30 days under atmospheric conditions (ca.60 % relative humidity). Our mechanistic studies confirm that the broadband emission is ascribed to short‐range electron‐phonon coupling in the strongly deformable lattice and generated self‐trapped carriers.  相似文献   

6.
Zero‐dimensional (0D) lead‐free perovskites have unique structures and optoelectronic properties. Undoped and Sb‐doped all inorganic, lead‐free, 0D perovskite single crystals A2InCl5(H2O) (A=Rb, Cs) are presented that exhibit greatly enhanced yellow emission. To study the effect of coordination H2O, Sb‐doped A3InCl6 (A=Rb, Cs) are also synthesized and further studied. The photoluminescence (PL) color changes from yellow to green emission. Interestingly, the photoluminescence quantum yield (PLQY) realizes a great boost from <2 % to 85–95 % through doping Sb3+. We further explore the effect of Sb3+ dopants and the origin of bright emission by ultrafast transient absorption techniques. Furthermore, Sb‐doped 0D rubidium indium chloride perovskites show excellent stability. These findings not only provide a way to design a set of new high‐performance 0D lead‐free perovskites, but also reveal the relationship between structure and PL properties.  相似文献   

7.
1,4‐butanediamine (BEA) is incorporated into FASnI3 (FA=formamidinium) to develop a series of lead‐free low‐dimensional Dion–Jacobson‐phase perovskites, (BEA)FAn?1SnnI3n+1. The broadness of the (BEA)FA2Sn3I10 band gap appears to be influenced by the structural distortion owing to high symmetry. The introduction of BEA ligand stabilizes the low‐dimensional perovskite structure (formation energy ca. 106 j mol?1), which inhibits the oxidation of Sn2+. The compact (BEA)FA2Sn3I10 dominated film enables a weakened carrier localization mechanism with a charge transfer time of only 0.36 ps among the quantum wells, resulting in a carrier diffusion length over 450 nm for electrons and 340 nm for holes, respectively. Solar cell fabrication with (BEA)FA2Sn3I10 delivers a power conversion efficiency (PCE) of 6.43 % with negligible hysteresis. The devices can retain over 90 % of their initial PCE after 1000 h without encapsulation under N2 environment.  相似文献   

8.
The spatial localization of charge carriers to promote the formation of bound excitons and concomitantly enhance radiative recombination has long been a goal for luminescent semiconductors. Zero‐dimensional materials structurally impose carrier localization and result in the formation of localized Frenkel excitons. Now the fully inorganic, perovskite‐derived zero‐dimensional SnII material Cs4SnBr6 is presented that exhibits room‐temperature broad‐band photoluminescence centered at 540 nm with a quantum yield (QY) of 15±5 %. A series of analogous compositions following the general formula Cs4?xAxSn(Br1?yIy)6 (A=Rb, K; x≤1, y≤1) can be prepared. The emission of these materials ranges from 500 nm to 620 nm with the possibility to compositionally tune the Stokes shift and the self‐trapped exciton emission bands.  相似文献   

9.
Persistent luminescence from purely organic materials is basically triggered by light and electricity, which largely confines its practical applications. A purely organic AIEgen exhibits not only persistent photoluminescence, but also transient and persistent room‐temperature mechanoluminescence. By simply turning on and off a UV lamp, tricolor emission switching between blue, white, and yellow was achieved. The data from single‐crystal structure analysis and theoretical calculation suggest that mechanism of the observed persistent mechanoluminescence (pML) is correlated with the strong spin–orbit coupling of the bromine atom, as well as the formation of H‐aggregates and restriction of intramolecular motions in noncentrosymmetric crystal structure. These results outline a fundamental principle for the development of new pML materials, providing an important step forward in expanding the application scope of persistent luminescence.  相似文献   

10.
The synthesis and characterization is reported of (C9NH20)2SnBr4, a novel organic metal halide hybrid with a zero‐dimensional (0D) structure, in which individual seesaw‐shaped tin (II) bromide anions (SnBr42?) are co‐crystallized with 1‐butyl‐1‐methylpyrrolidinium cations (C9NH20+). Upon photoexcitation, the bulk crystals exhibit a highly efficient broadband deep‐red emission peaked at 695 nm, with a large Stokes shift of 332 nm and a high quantum efficiency of around 46 %. The unique photophysical properties of this hybrid material are attributed to two major factors: 1) the 0D structure allowing the bulk crystals to exhibit the intrinsic properties of individual SnBr42? species, and 2) the seesaw structure enabling a pronounced excited state structural deformation as confirmed by density functional theory (DFT) calculations.  相似文献   

11.
The insertion of large organic cations in metal halide perovskites with reduced‐dimensional (RD) crystal structures increases crystal formation energy and regulates the growth orientation of the inorganic domains. However, the power conversion performance is curtailed by the insulating nature of the bulky cations. Now a series of RD perovskites with 2‐thiophenmethylammonium (TMA) as the intercalating cation are investigated. Compared with traditional ligands, TMA demonstrates improved electron transfer in the inorganic framework. TMA modifies the near‐band‐edge integrity of the RD perovskite, improving hole transport. A power conversion efficiency of 19 % is achieved, the highest to date for TMA‐based RD perovskite photovoltaics; these TMA devices provide a 12 % relative increase in PCE compared to control RD perovskite devices that use PEA as the intercalating ligand, a result of the improved charge transfer from the inorganic layer to the organic ligands.  相似文献   

12.
Hybrid halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) exhibit unusually low free‐carrier concentrations despite being processed at low‐temperatures from solution. We demonstrate, through quantum mechanical calculations, that an origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self‐regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4 % at room temperature. This behavior, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance.  相似文献   

13.
Four new three‐dimensional isostructural lanthanide–cadmium metal–organic frameworks (Ln–Cd MOFs), [LnCd2(imdc)2(Ac)(H2O)2]?H2O (Ln=Pr ( 1 ), Eu ( 2 ), Gd ( 3 ), and Tb ( 4 ); H3imdc=4,5‐imidazoledicarboxylic acid; Ac=acetate), have been synthesized under hydrothermal conditions and characterized by IR, elemental analyses, inductively coupled plasma (ICP) analysis, and X‐ray diffraction. Single‐crystal X‐ray diffraction shows that two LnIII ions are surrounded by four CdII ions to form a heteronuclear building block. The blocks are further linked to form 3D Ln–Cd MOFs by the bridging imdc3? ligand. Furthermore, the left‐ and right‐handed helices array alternatively in the lattice. Eu–Cd and Tb–Cd MOFs can emit characteristic red light with the EuIII ion and green light with the TbIII ion, respectively, while both Gd–Cd and Pr–Cd MOFs generate blue emission when they are excited. Different concentrations of Eu3+ and Tb3+ ions were co‐doped into Gd–Cd/Pr–Cd MOFs, and tunable luminescence from yellow to white was achieved. White‐light emission was obtained successfully by adjusting the excitation wavelength or the co‐doping ratio of the co‐doped Gd–Cd and Pr–Cd MOFs. These results show that the relative emission intensity of white light for Gd–Cd:Eu3+,Tb3+ MOFs is stronger than that of Pr–Cd:Eu3+,Tb3+ MOFs, which implies that the Gd complex is a better matrix than the Pr complex to obtain white‐light emission materials.  相似文献   

14.
Tetraphenylethylene (TPE) based molecules with easy synthesis, good thermal stability, and especially their aggregation‐induced emissions enhancement (AIEE) effect recently become attractive organic emitting materials due to their potentially practical application in OLEDs. Herein, the AIEE behaviors of tetraphenylethylene dyes (TMTPE and TBTPE) were investigated. Fabricated luminesent device using TMTPE dye as emitting layer displays two strong emitting bands: the blue emission coming from the first‐step aggregation and the yellow emission attributed to the second‐step aggregation. Thus, it can be utilized to fabricate the white‐light OLEDs (WOLEDs) of the single‐emitting‐component. A three‐layer device with the brightness of 1200 cd·m?2 and current ef?ciency of 0.78 cd·A?1 emits the close to white light with the CIE coordinates of x=0.333 andy=0.358, when applied voltage from 8–13 V, verifying that the TPE‐based dyes of AIEE effect can be effectively applied in single‐emitting‐component WOLEDs fabrication.  相似文献   

15.
The Group 18 elements (noble gases) were the last ones in the periodic system to have not been encountered in perovskite structures. We herein report the synthesis of a new group of double perovskites KM(XeNaO6) (M=Ca, Sr, Ba) containing framework‐forming xenon. The structures of the new compounds, like other double perovskites, are built up of the alternating sequence of corner‐sharing (XeO6) and (NaO6) octahedra arranged in a three‐dimensional rocksalt order. The fact that xenon can be incorporated into the perovskite structure provides new insights into the problem of Xe depletion in the atmosphere. Since octahedrally coordinated XeVIII and SiIV exhibit close values of ionic radii (0.48 and 0.40 Å, respectively), one could assume that XeVIII can be incorporated into hyperbaric frameworks such as MgSiO3 perovskite. The ability of Xe to form stable inorganic frameworks can further extend the rich and still enigmatic chemistry of this noble gas.  相似文献   

16.
17.
Perovskite lead halides (CH3NH3PbI3) have recently taken a promising position in photovoltaics and optoelectronics because of remarkable semiconducting properties and possible ferroelectricity. However, the potential toxicity of lead arouses great environmental concern for widespread application. A new chemically tailored lead‐free semiconducting hybrid ferroelectric is reported, N‐methylpyrrolidinium)3Sb2Br9 ( 1 ), which consists of a zero‐dimensional (0‐D) perovskite‐like anionic framework connected by corner‐ sharing SbBr6 coordinated octahedra. It presents a large ferroelectric spontaneous polarization of approximately 7.6 μC cm?2, as well as notable semiconducting properties, including positive temperature‐dependent conductivity and ultraviolet‐sensitive photoconductivity. Theoretical analysis of electronic structure and energy gap discloses a dominant contribution of the 0‐D perovskite‐like structure to the semiconducting properties of the material. This finding throws light on the rational design of new perovskite‐like hybrids, especially lead‐free semiconducting ferroelectrics.  相似文献   

18.
A series of five l ‐di‐p‐toluoyl‐tartaric acid (l ‐DTTA) lanthanide coordination polymers, namely {[Ln4K4 L6(H2O)x]?yH2O}n, [Ln=Dy ( 1 ), x=24, y=12; Ln=Ho ( 2 ), x=23, y=12; Ln=Er ( 3 ), x=24, y=12; Ln=Yb ( 4 ), x=24, y=11; Ln=Lu ( 5 ), x=24, y=12] have been isolated by simple reactions of H2L (H2L= L ‐DTTA) with LnCl3?6 H2O at ambient temperature. X‐ray crystallographic analysis reveals that complexes 1 – 5 feature two‐dimensional (2D) network structures in which the Ln3+ ions are bridged by carboxylate groups of ligands in two unique coordinated modes. Luminescent spectra demonstrate that complex 1 realizes single‐component white‐light emission, while complexes 2 – 4 exhibit a characteristic near‐infrared (NIR) luminescence in the solid state at room temperature.  相似文献   

19.
20.
We report a family of cationic lead halide layered materials, formulated as [Pb2X2]2+[O2C(CH)2CO2] (X=F, Cl, Br), exhibiting pronounced broadband white‐light emission in bulk form. These well‐defined PbX‐based structures achieve an external quantum efficiency as high as 11.8 %, which is comparable to the highest reported value (ca.9 %) for broadband phosphors based on layered organolead halide perovskites. More importantly, our cationic materials are ultrastable lead halide materials, which overcome the air/moisture‐sensitivity problems of lead perovskites. In contrast to the perovskites and other bulk emitters, the white‐light emission intensity of our materials remains undiminished after continuous UV irradiation for 30 days under atmospheric conditions (ca.60 % relative humidity). Our mechanistic studies confirm that the broadband emission is ascribed to short‐range electron‐phonon coupling in the strongly deformable lattice and generated self‐trapped carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号