首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein‐film square‐wave voltammetry of uniformly adsorbed molecules of redox lipophilic enzymes is applied to study their electrochemical properties, when a reversible follow‐up chemical reaction is coupled to the electrochemically generated product of enzyme's electrode reaction. Theoretical consideration of this so‐called “surface ECrev mechanism” under conditions of square‐wave voltammetry has revealed several new aspects, especially by enzymatic electrode reactions featuring fast electron transfer. We show that the rate of chemical removal/resupply of electrochemically generated Red(ads) enzymatic species, shows quite specific features to all current components of calculated square‐wave voltammograms and affects the electrode kinetics. The effects observed are specific for this particular redox mechanism (surface ECrev mechanism), and they got more pronounced at high electrode kinetics of enzymatic reaction. The features of phenomena of “split net‐SWV peak” and “quasireversible maximum”, which are typical for surface redox reactions studied in square‐wave voltammetry, are strongly affected by kinetics and thermodynamics of follow‐up chemical reaction. While we present plenty of relevant voltammetric situations useful for recognizing this particular mechanism in square‐wave voltammetry, we also propose a new approach to get access to kinetics and thermodynamics of follow‐up chemical reaction. Most of the results in this work throw new insight into the features of protein‐film systems that are coupled with chemical reactions.  相似文献   

2.
Surface reactions of uniformly adsorbed redox molecules at working electrode surface are seen as adequate models to studying chemical reactivity of many lipophilic enzymes. When considered under pulse voltammetric techniques, these systems show several uncommon features, whose origin is still not completely clear. The phenomena of “quasireverible maximum”, “splitting” of the net peak in square‐wave voltammetry, and the very steep descent of Faradaic currents of simple surface redox reactions exhibiting fast electron transfer are just some of the features that make these systems quite interesting for further elaborations. In this work, we present a set of theoretical calculations under conditions of square‐wave voltammetry in order try to explain some of aforementioned phenomena. The major goal of our work is to get insight to some voltammetric and chrono‐amperometric features of two considered surface reactions, i. e. (1) the “simple” surface redox reaction, and (2) surface redox reaction coupled to follow‐up irreversible chemical reaction of electrochemically generated redox species (or surface ECirr). We focus on the role of created Red(ads) (here in the reduction pulses only) to the current components of calculated square‐wave voltammograms exhibiting fast electrode reaction. We show that the irreversible chemical removal of electrochemically generated Red(ads) species, created in the potential pulses where half‐reaction of reduction Ox(ads)+ne‐?→Red(ads) is “defined” to take place, causes significant increase of all square‐wave current components. The results presented in this work show how complex the chrono‐amperometric features of surface redox reactions under pulse voltammetric conditions might be. In addition, we point out that both half reactions of a given simple surface redox process can occur, at both, “only reduction” and “only oxidation” potential pulses in square‐wave voltammetry. This, in turn, contributes to the occurrence of many phenomena observed in simple protein‐film voltammetry reactions. The effects of chemical reaction rate to the features of calculated square‐wave voltammograms of surface ECirr systems with fast electrode reaction are reported for the first time in this work.  相似文献   

3.
Liquid marbles are emergent microreactors owing to their isolated environment and the flexibility of materials used. Plasmonic liquid marbles (PLMs) are demonstrated as the smallest spectroelectrochemical microliter‐scale reactor for concurrent spectro‐ and electrochemical analyses. The three‐dimensional Ag shell of PLMs are exploited as a bifunctional surface‐enhanced Raman scattering (SERS) platform and working electrode for redox process modulation. The combination of SERS and electrochemistry (EC) capabilities enables in situ molecular read‐out of transient electrochemical species, and elucidate the potential‐dependent and multi‐step reaction dynamics. The 3D configuration of our PLM‐based EC‐SERS system exhibits 2‐fold and 10‐fold superior electrochemical and SERS performance than conventional 2D platforms. The rich molecular‐level electrochemical insights and excellent EC‐SERS capabilities offered by our 3D spectroelectrochemical system are pertinent in charge transfer processes.  相似文献   

4.
This article describes an electrochemical strategy to achieve low background‐current levels in horse‐radish peroxidase (HRP)‐based electrochemical immunosensors. The strategy consists of (i) the use of an HRP substrate/product redox couple whose formal potential is high and (ii) the use of an electrode that shows moderate electrocatalytic activity for the redox couple. The strategy is proved by a model biosensor using a catechol/o‐benzoquinone redox couple and an indium tin oxide (ITO) electrode. The combined effect of high formal potential and moderate electrocatalytic activity allows o‐benzoquinone electroreduction with minimal catechol electrooxidation and H2O2 electroreduction. The detection limit for mouse‐IgG is 100 pg/mL.  相似文献   

5.
A comparative study conducted with square-wave voltammetry (SWV) and electrochemical faradaic spectroscopy (EFS) is presented for a reversible electrode reaction of dissolved redox couple in the presence of both Ox and Red components. In agreement with previous studies, the net peak current ΔΨp of the theoretical SW voltammograms is positioned at the formal potential E0′ and does not depend on the concentration ratio c(Ox)/c(Red). However the forward-to-backward peak current ratio is sensitive to the redox state. For very low SW amplitudes, theoretical data imply superior features of EFS over SWV. Theoretical and experimental calibration lines are in good agreement within the interval 0.2≤x(Ox)≤0.8.  相似文献   

6.
A new strategy of three‐electrode system fabrication in polymer‐based microfluidic systems is described here. Standard lithography, hot embossing and UV‐assisted thermal bonding were employed for fabrication and assembly of the microfluidic chip. For the electrode design the gold working (WE) and counter electrodes (CE) are placed inside a main channel through which the sample solution passes. A silver reference electrode (RE) is embedded in a small side channel containing KCl solution that is continuously pushed into the main channel. In the present work, the overall electrochemical set up and its microfabrication is described. Conditions including silver ion concentration, cyclic voltammetry (CV) settings, and the flow rate of KCl solution in the RE channel were optimized. The electrochemical performance of the three‐electrode system was evaluated by CV and also by amperometric oxidation of ferro hexacyanide ([Fe(CN)6]4?) and ruthenium bipyridyl ([Ru(bipy)3]2+) at 400 mV and 1200 mV, respectively. CV analysis using ferri/ferro hexacyanide showed a stable, quasi‐reversible redox reaction at the electrodes with 96 mV peak separation and an anodic/cathodic peak ratio of 1. Amperometric analysis of the electrochemical species resulted in linear correlation between analyte concentration and current response in the range of 0.5–15 µM for [Fe(CN)6]4?, and 0–1000 µM for [Ru(bipy)3]2+. Upon the given experimental conditions, the limit of detection was found to be 3.15 µM and 24.83 µM for [Fe(CN)6]4? and [Ru(bipy)3]2+, respectively. As a fully integrated three‐electrode system that is fabricated on polymer substrates, it has great applications in microfluidic‐based systems requiring stable electrochemical detection.  相似文献   

7.
A new screen‐printed electrochemical array formed by 96 three‐electrode electrochemical cells with carbon‐based working electrodes (DRP‐96X110) was developed by DropSens. The electrochemical and electro(analytical) performance of this multiple‐analysis plate is herein presented. Different proofs of concept relying on reference benchmark redox compounds, streptavidin‐biotin high affinity interactions and magnetic‐based immunoassays were carried out. The results showed the electrochemical plate versatility and usefulness as an innovative high‐throughput transducer surface for multiple and decentralized applications.  相似文献   

8.
The electrochemical oxidation of the biorefinery product 5‐(hydroxymethyl)furfural (HMF) to 2,5‐furandicarboxylic acid (FDCA), an important platform chemical for the polymer industry, is receiving increasing interest. FDCA‐based polymers such as polyethylene 2,5‐furandicarboxylate (PEF) are sustainable candidates for replacing polyethylene terephthalate (PET). Herein, we report the highly efficient electrocatalytic oxidation of HMF to FDCA, using Ni foam modified with high‐surface‐area nickel boride (NixB) as the electrode. Constant potential electrolysis in combination with HPLC revealed a high faradaic efficiency of close to 100 % towards the production of FDCA with a yield of 98.5 %. Operando electrochemistry coupled to ATR‐IR spectroscopy indicated that HMF is oxidized preferentially via 5‐hydroxymethyl‐2‐furancarboxylic acid rather than via 2,5‐diformylfuran, which is in agreement with HPLC results. This study not only reports a low‐cost active electrocatalyst material for the electrochemical oxidation of HMF to FDCA, but additionally provides insight into the reaction pathway.  相似文献   

9.
Large number of lipophilic substances, whose electrochemical transformation takes place from adsorbed state, belong to the class of so‐called “surface‐redox reactions”. Of these, especially important are the enzymatic redox reactions. With the technique named “protein‐film voltammetry” we can get insight into the chemical features of many lipophilic redox enzymes. Electrochemical processes of many redox adsorbates, occurring at a surface of working electrode, are very often coupled with chemical reactions. In this work, we focus on the application of square‐wave voltammetry (SWV) to study the theoretical features of a surface electrode reaction coupled with two chemical steps. The starting electroactive form Ox(ads) in this mechanism gets initially generated via preceding chemical reaction. After undergoing redox transformation at the working electrode, Ox(ads) species got additionally regenerated via chemical reaction of electrochemically generated product Red(ads) with a given substrate Y. The theory of this so‐called surface CEC’ mechanism is presented for the first time under conditions of square‐wave voltammetry. While we present plenty of calculated voltammograms of this complex electrode mechanism, we focus on the effect of rate of regenerative (catalytic) step to simulated voltammograms. We consider both, electrochemical reactions featuring moderate and fast electron transfer. The obtained voltammetric patterns are very specific, having sometime hybrid‐like features of voltammograms as typical for CE, EC and EC’ mechanisms. We give diagnostic criteria to recognize this complex mechanism in SWV, but we also present hints to access the kinetic and thermodynamic parameters relevant to both chemical steps, and the electrochemical reaction, too. Indeed, the results presented in this work can help experimentalists to design proper experiments to study chemical features of important lipophilic systems.  相似文献   

10.
A new carbon ionic liquid paste bioelectrode was fabricated by mixing hemoglobin (Hb) with graphite powder, ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIMBF4) and liquid paraffin homogeneously. Nafion film was cast on the electrode surface to improve the stability of bioelectrode. Direct electrochemistry of Hb in the bioelectrode was carefully investigated. Cyclic voltammetric results indicated that a pair of well‐defined and quasi‐reversible electrochemical responses appeared in pH 7.0 phosphate buffer solution (PBS), indicating that direct electron transfer of Hb was realized in the modified electrode. The formal potential (E0′) was calculated as ?0.316 V (vs. SCE), which was the typical characteristic of the electrochemical reaction of heme Fe(III)/Fe(II) redox couple. Based on the cyclic voltammetric results the electrochemical parameters of the electrode reaction were calculated. This bioelectrode showed high electrocatalytic activity towards the reduction of trichloroacetic acid (TCA) with good stability and reproducibility.  相似文献   

11.
A new electrochemical sequence‐specific DNA detection platform based on primer generation‐rolling circle amplification (PG‐RCA), methylene blue (MB) redox indicator, and indium tin oxide (ITO) electrode is reported. In the presence of a specific target sequence, PG‐RCA, an isothermal DNA amplification technique, produced large amounts of amplicons in an exponential manner. In addition to the standard components, the reaction mixture contained MB, which bound with the PG‐RCA amplicons. End‐point electrochemical measurement by differential pulse voltammetry (DPV) was performed using ITO electrode. The amplicon‐bound MB resulted in a lower DPV signal than free MB due to a smaller diffusion coefficient as well as electrostatic repulsion between the negatively charged amplicon‐bound MB and ITO electrode. With simple assay design (recognition probe) and instrumentation (operating temperature at 37 °C and ITO electrode without the need for probe immobilization), this detection platform is well suited for point‐of‐care and on‐site testing. Real‐time measurement was also achieved by pretreating the ITO electrode with bovine serum albumin.  相似文献   

12.
Non-faradaic potentiometry has been plagued by a great many fundamental errors and a lack of conceptualization. Of greatest concern is the second Nernst equation hiatus. Potentiometry may be generally classified as faradaic and non-faradaic. The former deals with the redox reactions using the Nernst equation to explain the potential origin. The latter deals with the non-redox reactions using the Boltzmann and modified Boltzmann equations to explain the origin of electrode potential. Redox faradaic potentiometry has been well described in the textbooks. However, non-faradaic potentiometry has been almost completely neglected in the literature. Many well-known electrodes, such as the pH glass electrode, common reference electrodes, and ion selective electrodes (ISE) have been mistakenly interpreted as redox reactions or ion exchange reactions. New theories and experimental results show their mechanisms to be non-faradaic in nature. Furthermore, the reaction mechanisms for ISE have been confused in textbooks with redox reactions and the Nernst equation. The ISE potentials originating from adsorption of ions or charged particles based on surface charge density will be explained using the double and counterion triple layers concept. The new counterion triple layer concept may be applied to the potential development of sensors. The reason for a new concept, theory, or mechanism is to better explain the phenomena. Examples will be given of how our new concept explains the capacitor, counterion triple layer, surface adsorbed layers interactions, and the interface structure. We will also discuss the new sensor development based on the new adsorption concept. For the first time a new type of Ag/AgCl reference electrode for non-faradaic potentiometry will be presented, one without a liquid junction and with a Pt wire instead of a salt bridge. They will help open up a new horizon for electrochemical sensor research and may be used under unusual conditions, such as high temperature and high pressure, stirring, etc.  相似文献   

13.
A simple method is described to discriminate between analytes comigrating under on‐plate separation conditions, whose electrochemical behavior displays different reversible characters. It is based on the use of dual electrode detectors pencil‐drawn at the end of paper‐based fluidic channels defined by hydrophobic barriers. Simultaneous detection of comigrating species is achieved by applying to the upstream pencil‐drawn working electrode a potential for the oxidation (or reduction) of both analytes, while to the downstream pencil‐drawn working electrode a potential is imposed for the reverse process involving the product of the sole analyte undergoing a reversible enough electrochemical process. The performance of these inexpensive devices was preliminarily optimized by adopting hexacyanoferrate(II) as prototype species undergoing a reversible anodic process at carbon electrodes. They were then used as dual electrode detectors for thin‐layer chromatographic runs conducted on paper‐based microfluidic devices. Two types of synthetic solutions, one containing different contents of dopamine (DA) and ascorbic acid (AA) and the other of paracetamol (PA) and AA, were chosen as model samples. This choice was prompted us by the fact that in both cases these analytes comigrated under the adopted experimental conditions and required similar enough oxidation potentials. Nevertheless, DA and PA underwent reversible enough anodic processes while an irreversible electrochemical reaction is involved in the AA oxidation. Satisfactory results were found for both couples of target analytes, whose simultaneous detection was achieved within 230 s and was characterized by good enough repeatability and sensitivity. In particular, this approach appears to be well suited for the rapid and inexpensive assembling of electrochemical detectors for flow analysis systems.  相似文献   

14.
《Electroanalysis》2018,30(2):353-360
A label‐free electrochemical immunosensor based on the liquid crystal (E)‐1‐decyl‐4‐[(4‐decyloxyphenyl)diazenyl]pyridinium bromide (Br−Py), together with heparin‐stabilized gold nanoparticles (AuNP‐Hep) and Nafion is proposed for the determination of prostate‐specific antigen (PSA). The Br−Py liquid crystal presented redox properties and good film‐forming abilities on the electrode surface, and thus it is a suitable alternative as a redox probe for a label‐free electrochemical immunosensor, which could simplify the analysis methodology. The stepwise construction of the immunosensor and the incubation process (immunocomplex formation) were characterized by voltammetry and electrochemical impedance spectroscopy. The proposed immunosensor could directly detect PSA concentrations in the incubation samples, based on the suppression of the Br−Py redox peak (‘base peak’) current. After optimization, the immunosensor exhibited a linear response to PSA concentrations in the range of 0.1 to 50 ng mL−1, with a calculated detection limit of 0.08 ng mL−1. The reproducibility (coefficient of variance less than 3.0 %), selectivity and accuracy of the methodology were adequate. The immunosensor was satisfactorily applied in the quantification of PSA in human blood plasma samples.  相似文献   

15.
In this paper the influence of the electrochemical reaction at the auxiliary electrode of oxygen microsensors on the sensor performance was investigated. When the auxiliary electrode is closely spaced to the working electrode, the redox cycling of O2/H2O takes place in an electrochemical oxygen sensor. This cycling alters the oxygen distribution around the working electrode and therefore affects the measured cathodic current passing through the working electrode. Calibrations have to be taken out to determine the real O2/H2O cycling effects. Furthermore, this redox cycling also provides the possibility to enhance the sensitivity of the electrochemical oxygen microsensor. Experimental results indicate that the sensitivity of the oxygen sensor is enhanced 3.0 times with the on‐chip 10 μm spaced interdigitated auxiliary electrode.  相似文献   

16.
In this paper a Mg2Al‐Cl layered double hydroxide (Mg2Al‐LDH) modified carbon ionic liquid electrode (CILE) was prepared and further used for the electrochemical detection of rutin. Cyclic voltammograms of rutin on Mg2Al‐LDH/CILE were recorded with a pair of well‐defined redox peaks appeared in pH 2.5 phosphate buffer solution, which was ascribed to the electrochemical reaction of rutin. Due to the presence of Mg2Al‐LDH on the electrode surface, the redox peak currents increased greatly and the electrochemical parameters were calculated. Under the optimal conditions the oxidation peak current was proportional to rutin concentration in the range from 0.08 μmol L‐1 to 800.0 μmol L‐1 with the detection limit on 0.0255 μmol L‐1 (3σ). The fabricated electrode showed good reproducibility and stability, which was successfully applied to rutin tablet samples determination.  相似文献   

17.
A new application of scanning electrochemical microscopy (SECM) to probe the transport of protons through membranes is described. Herein, a probe ultramicroelectrode (UME) is modified with a self‐assembled monolayer (SAM) of 11‐mercaptoundecanoic acid to qualitatively image areas within different pH regions above a track‐etched membrane. The current response of the modified electrode in the presence of potassium hexacyanoferrate as electroactive component is different in acidic and alkaline solutions. Depending on the pH value of the solution, the SAM‐covered electrode exposes either a neutral or a negatively charged insulating monolayer at pH 3 or 7, respectively, which leads to an increase/decrease in the faradaic current due to electrostatic interactions between the neutral/charged surface and the charged redox mediator. Therefore, local pH changes in the close vicinity of a membrane‐like substrate lead to different current responses recorded at the tip electrode when scanning above the surface.  相似文献   

18.
《Electroanalysis》2006,18(8):807-813
The electrochemical oxidation of ascorbate ions is comparatively studied at polyaniline (PANI) and poly‐ortho‐methoxyaniline (POMA) layers in absence and presence of electrodeposited copper species. In comparison to PANI, POMA layers allow decreasing the overpotential necessary for driving the ascorbate oxidation reaction. A nonlinear dependence of the ascorbate oxidation current on the polymer layer redox charge is found. Copper electrodeposited in PANI and POMA layers is electrocatalytically active for the investigated reaction. Two separate oxidation waves are observed in the case of Cu‐PANI whereas a single ascorbate oxidation wave and enhanced currents are found in the Cu‐POMA case.  相似文献   

19.
We report the discovery of a highly active Ni-Co alloy electrocatalyst for the oxidation of hydrazine (N(2)H(4)) and provide evidence for competing electrochemical (faradaic) and chemical (nonfaradaic) reaction pathways. The electrochemical conversion of hydrazine on catalytic surfaces in fuel cells is of great scientific and technological interest, because it offers multiple redox states, complex reaction pathways, and significantly more favorable energy and power densities compared to hydrogen fuel. Structure-reactivity relations of a Ni(60)Co(40) alloy electrocatalyst are presented with a 6-fold increase in catalytic N(2)H(4) oxidation activity over today's benchmark catalysts. We further study the mechanistic pathways of the catalytic N(2)H(4) conversion as function of the applied electrode potential using differentially pumped electrochemical mass spectrometry (DEMS). At positive overpotentials, N(2)H(4) is electrooxidized into nitrogen consuming hydroxide ions, which is the fuel cell-relevant faradaic reaction pathway. In parallel, N(2)H(4) decomposes chemically into molecular nitrogen and hydrogen over a broad range of electrode potentials. The electroless chemical decomposition rate was controlled by the electrode potential, suggesting a rare example of a liquid-phase electrochemical promotion effect of a chemical catalytic reaction ("EPOC"). The coexisting electrocatalytic (faradaic) and heterogeneous catalytic (electroless, nonfaradaic) reaction pathways have important implications for the efficiency of hydrazine fuel cells.  相似文献   

20.
Photosystem 2 (PS2) that catalyses light driven water splitting in photosynthesis was ‘wired’ to electrode surfaces via osmium‐containing redox polymers based on poly(vinyl)imidazol. The redox polymer hydrogel worked as both immobilization matrix and electron acceptor for the enzyme. Upon illumination, the enzymatic reaction could be switched on and a catalytic current was observed at the electrode. The catalytic current is directly dependent on the intensity of light used for the excitation of PS2. A typical current density of 45 μA cm?2 at a light intensity of 2.65 mW cm?2 could be demonstrated with a significantly improved operational stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号