首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2018,30(2):250-258
An electrochemical DNA biosensor for DNA determination of genetically modified (GM) soybean (CaMV 35S target genes) was developed utilizing a new detection concept based on the adsoption of anthraquinone‐2‐sulphonic acid (AQMS) on the reduced graphene oxide nano‐particles (rGO) during DNA hybridization events. The aminated DNA probe for CaMV 35S was immobilized onto poly(n‐butyl acrylate) film modified with succinimide functional groups [poly(nBA‐NAS)] via peptide covalent bond. Nanosheets of rGO were entrapped in the poly(nBA‐NAS) film to form a conducting [poly(nBA‐NAS)‐rGO] film of the DNA biosensor. Besides facilitating the electron transfer reactions, the rGO also functioned as an adsorbent for AQMS. The sensing mechanism of the proposed DNA biosensor involved measuring the oxidation current of the AQMS adsorbed on the electrode surface at −0.50 V using differential pulse voltammetry (DPV) before and after a DNA hybridization event. Under optimum conditions, the DNA biosensor demonstrated a linear proportionality between AQMS oxidation signal and logarithm cDNA concentration from 1.0×10−15 M to 1.0×10−8 M target DNA with a detection limit of 6.3×10−16 M. The electrochemical DNA biosensor possessed good selectivity and a shelf life of about 40 days with relative standard deviation of reproducibility obtained in the range of 3.7–4.6% (n=5). Evaluation of the DNA biosensor using GM soybean DNA extracts showed excellent recovery percentages of 97.2–104.0.  相似文献   

2.
An electrically neutral cobalt complex, [Co(GA)2(phen)] (GA=glycollic acid, phen=1,10‐phenathroline), was synthesized and its interactions with double‐stranded DNA (dsDNA) were studied by using electrochemical methods on a glassy carbon electrode (GCE). We found that [Co(GA)2(phen)] could intercalate into the DNA duplex through the planar phen ligand with a high binding constant of 6.2(±0.2)×105 M ?1. Surface studies showed that the cobalt complex could electrochemically accumulate within the modified dsDNA layer, rather than within the single‐stranded DNA (ssDNA) layer. Based on this feature, the complex was applied as a redox‐active hybridization indicator to detect 18‐base oligonucleotides from the CaMV35S promoter gene. This biosensor presented a very low background signal during hybridization detection and could realize the detection over a wide kinetic range from 1.0×10?14 M to 1.0×10?8 M , with a low detection limit of 2.0 fM towards the target sequences. The hybridization selectivity experiments further revealed that the complementary sequence, the one‐base‐mismatched sequence, and the non‐complementary sequence could be well‐distinguished by the cobalt‐complex‐based biosensor.  相似文献   

3.
Mesoporous titania‐Nafion composite doped with carbon nanotube (CNT) has been used for the immobilization of tris(2,2′‐bipyridyl)ruthenium(II) (Ru(bpy)32+) and alcohol dehydrogenase on an electrode surface to yield a highly sensitive and stable electrogenerated chemiluminescence (ECL) ethanol biosensor. The presence of CNT in the composite film increases not only the sensitivity of the ECL biosensor but also the long‐term stability of the biosensor. The present biosensor responds linearly to ethanol in the wide concentration ranges from 1.0×10?5 M to 1.0×10?1 M with a detection limit of 5.0×10?6 M (S/N=3). The present ECL ethanol biosensor exhibited higher ECL response compared to that obtained with the ECL biosensor based on the corresponding composite without CNT. The present CNT‐based ECL biosensor showed good long‐term stability with 75% of its initial activity retained after 2 weeks of storage in 50 mM phosphate buffer at pH 7.0.  相似文献   

4.
An ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium hexafluorophosphate, BMIMPF6)‐single‐walled carbon nanotube (SWNT) gel modified glassy carbon electrode (BMIMPF6‐SWNT/GCE) is fabricated. At it the voltammetric behavior and determination of p‐nitroaniline (PNA) is explored. PNA can exhibit a sensitive cathodic peak at ?0.70 V (vs. SCE) in pH 7.0 phosphate buffer solution on the electrode, resulting from the irreversible reduction of PNA. Under the optimized conditions, the peak current is linear to PNA concentration over the range of 1.0×10?8–7.0×10?6 M, and the detection limit is 8.0×10?9 M. The electrode can be regenerated by successive potential scan in a blank solution for about 5 times and exhibits good reproducibility. Meanwhile, the feasibility to determine other nitroaromatic compounds (NACs) with the modified electrode is also tested. It is found that the NACs studied (i.e., p‐nitroaniline, p‐nitrophenol, o‐nitrophenol, m‐nitrophenol, p‐nitrobenzoic acid, and nitrobenzene) can all cause sensitive cathodic peaks under the conditions, but their peak potentials and peak currents are different to some extent. Their peak currents and concentrations show linear relationships in concentration ranges with about 3 orders of magnitude. The detection limits are 8.0×10?9 M for p‐nitroaniline, 2.0×10?9 M for p‐nitrophenol, 5.0×10?9 M for o‐nitrophenol, 5.0×10?9 M for m‐nitrophenol, 2.0×10?8 M for p‐nitrobenzoic acid and 8.0×10?9 M for nitrobenzene respectively. The BMIMPF6‐SWNT/GCE is applied to the determination of NACs in lake water.  相似文献   

5.
The highly efficient H2O2 biosensor was fabricated on the basis of the complex films of hemoglobin (Hb), nano ZnO, chitosan (CHIT) dispersed solution and nano Au immobilized on glassy carbon electrode (GCE). Biocompatible ZnO‐CHIT composition provided a suitable microenvironment to keep Hb bioactivity (Michaelis‐Menten constant of 0.075 mmol L?1). The presence of nano Au in matrix could effectively enhance electron transfer between Hb and electrode. The electrochemical behaviors and effects of solution pH values were carefully examined in this paper. The (ZnO‐CHIT)‐Au‐Hb/GCE demonstrated excellently electrocatalytical ability for H2O2. This biosensor had a fast response to H2O2 less than 4 s and excellent linear relationships were obtained in the concentration range from1.94×10?7 to 1.73×10?3 mol L?1 with the detection limit of 9.7×10?8 mol L?1 (S/N=3) under the optimum conditions. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

6.
In this work, a simple and novel electrochemical biosensor based on a glassy carbon electrode (GCE) modified with graphene oxide nanosheets (GO) was developed for detection of DNA sequences. The morphology of prepared nanoplatform was investigated by scanning electron microscopy, infrared (FTIR) and UV/Vis absorption spectra. The fabrication processes of electrochemical biosensor were characterized with cyclic voltammetry and electrochemical impedance spectroscopy (EIS) in an aqueous solution. The optimization of experimental conditions such as immobilization of the probe BRCA1 and its hybridization with the complementary DNA was performed. Due to unique properties of graphene oxide nanosheets such as large surface area and high conductivity, a wide liner range of 1.0 × 10?17–1.0 × 10?9 M and detection limit of 3.3 × 10?18 M were obtained for detection of BRCA1 5382 mutation by EIS technique. Under the optimum conditions, the proposed biosensor (ssDNA/GO/GCE) revealed suitable selectivity for discriminating the complementary sequences from non-complementary sequences, so it can be applicable for detection of breast cancer.  相似文献   

7.
A tyrosinase (Tyr) biosensor was fabricated by immobilizing Tyr on the surface of multiwalled carbon nanotubes (MWNTs)‐chitosan (Chit) composite modified glassy carbon electrode (GCE). The MWNTs‐Chit composite film provided a biocompatible platform for the Tyr to retain the bioactivity and the MWNTs possessed excellent inherent conductivity to enhance the electron transfer rate. The Tyr/MWNTs‐Chit/GCE biosensor showed high sensitivity (412 mA/M), broad linear response (1.0×10?8–2.8×10?5 M), low detection limit (5.0 nM) and good stability (remained 93% after 10 days) for determination of phenol. The biosensor was further applied to rapid detection of the coliforms, represented by Escherichia coli (E. coli) in this work. The current responses were proportional to the quantity of coliforms in the range of 104–106 cfu/mL. After 5.0 h of incubation, E. coli could be detected as low as 10 cfu/mL.  相似文献   

8.
A new nanocomposite material for enzyme immobilization and subsequent direct electrochemistry and electrocatalysis was developed by using 1,2‐dimyristoyl‐sn‐glycero‐3‐phospho‐(1‐rac‐glycerol)‐phospholipid‐monolayer‐membrane‐modified graphene (DMPG‐G). Microperoxidase‐11 (MP11) was chosen as a model enzyme to investigate the composite system. Owing to the improved conductivity and biocompatible microenvironment, MP11 that was immobilized in the matrix of the DMPG‐G nanocomposite (DMPG‐G‐MP11) effectively retained its native structure and bioactivity. DMPG‐G‐MP11‐modified glassy carbon electrode (DMPG‐G‐MP11/GCE) exhibited a pair of well‐defined quasi‐reversible redox peaks of MP11 and showed high electrocatalytic activity towards hydrogen peroxide (H2O2). The linear response of the developed biosensor for the determination of H2O2 ranged from 2.0×10?6 to 4.5×10?4 M with a detection limit of 7.2×10?7 M . This biosensor exhibited high reproducibility and long‐term storage stability. The promising features of this biosensor indicate that these lipid–graphene nanocomposites are ideal candidate materials for the direct electrochemistry of redox proteins and that they could serve as a versatile platform for the construction of a third‐generation biosensor.  相似文献   

9.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

10.
A new electrochemical sensor based on Fe3O4@SiO2‐PANI‐Au nanocomposite was fabricated for modification of glassy carbon electrode (Fe3O4@SiO2‐PANI‐Au GCE). The Fe3O4@SiO2‐PANI‐Au nanocomposite was characterized by TEM, FESEM‐EDS‐Mapping, XRD, and TGA methods. The Fe3O4@SiO2‐PANI‐Au GC electrode exhibited an acceptable sensitivity, fast electrochemical response, and good selectivity for determination of quercetin. Under optimal conditions, the linear range for quercetin concentrations using this sensor was 1.0×10?8 to 1.5×10?5 mol L?1, and the limit of detection was 3.8×10?9 mol L?1. The results illustrated that the offered sensor could be a possible alternative for the measurement of quercetin in food samples and biological fluids.  相似文献   

11.
《Analytical letters》2012,45(3):459-470
Abstract

A highly sensitive electrochemical biosensor for the detection of trace amount of 1‐naphthol was designed. Acid‐denatured DNA were immobilized onto the pretreated glassy carbon electrode (GCE(ox)) surface. Two well‐defined oxidation peaks were observed on the denatured DNA‐modified GCE(ox) at about +0.80 V and +1.10 V (vs. Ag/AgCl) in 0.10‐M acetate buffer (pH 5.0). The peak current of the guanine residue decreased with increasing concentration of 1‐naphthol. The optimum experimental conditions for the detection of 1‐naphthol were explored, and the calibration was linear for 1‐naphthol in the range of 1.0×10?8?1.1×10?6 M, with a correlation coefficient of 0.998. The limit of detection (LOD) was 5.0×10?9 M (S/N=3).  相似文献   

12.
Prussian blue nanoparticles (PBNPs) were prepared by a self‐assembly process on a glassy carbon electrode (GCE) modified with poly(o‐phenylenediamine) (PoPD) film. The stepwise fabrication process of PBNP‐modified PoPD/GCE was characterized using scanning electron microscopy and electrochemical impedance spectroscopy. The prepared PBNPs showed an average size of 70 nm and a homogeneous distribution on the surface of the modified electrode. The PBNPs/PoPD/GCE showed electrocatalytic activity towards the oxidation of pyridoxine (PN) and was used as an amperometric sensor. The modified electrode exhibited a linear response for PN oxidation over the concentration range 3–38.5 μM with a detection limit of ca 6.10 × 10?7 M (S/N = 3) and sensitivity of 2.79936 × 103 mA M?1 cm?2 using an amperometric method. The mechanism and kinetics of the catalytic oxidation reaction of PN were investigated using cyclic voltammetry and chronoamperometry. The values of α, kcat and D were estimated as 0.36, 1.089 × 102 M?1 s?1 and 8.9 × 10?5 cm2 s?1, respectively. This sensor also exhibited good anti‐interference and selectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A modified electrode was fabricated by grafting of poly (2,6‐pyridinedicarboxylic acid) film (PDC) by electropolymerization of 2,6‐pyridinedicarboxylic acid on the glassy carbon electrode (GCE). Then, gold nanoparticles (NG) and 1,2‐naphthoquinone‐4‐sulfonic acid sodium (Nq) were immobilized on the PDC/GCE to prepare Nq/NG/PDC/GCE by immersing electrode into NG and Nq solution, respectively. The Nq species on NG/PDC/GCE could catalyze electrooxidation of N‐acetyl‐L ‐cysteine (NAC) with lowering the over potential by about 600 mV. This method used for detection of NAC in dynamic range from 4.0×10?6 M to 1.30×10?4 M with a detection of limit (2σ) 8.0×10?7 M.  相似文献   

14.
《Electroanalysis》2017,29(9):2114-2124
A novel and sensitive amperometric biosensor for L‐lysine determination based on a glassy carbon electrode (GCE) modified with graphene (GR) and redox polymer poly(vinylferrocene) (PVF) was constructed. L‐lysine‐α‐oxidase was immobilized onto the modified GCE by a glutaraldehyde/bovine serum albumin cross‐linking procedure. SEM, CV and EIS were used for the characterization of the surface morphology and stepwise fabrication processes of PVF/GR composite. Optimal composition of the biosensor and experimental conditions that affect the performance of the biosensor are discussed. The effect of buffer pH on biosensor response was studied in detail over a wide pH range. L‐lysine biosensor displayed a linear range of 9.9×10−7 ‐ 3.1×10−4 M with a low detection limit of 2.3×10−7 M and KM app value of 0.4 mM. The L‐lysine biosensor was tested using pharmaceutical sample and cheese with satisfactory results.  相似文献   

15.
Double‐stranded DNA and multiwalled carbon nanotube (MWNT) complex modified glassy carbon electrodes (DNA‐MWNT‐GCE) were employed to discriminate penicillamine (PA) enantiomers. Cyclic voltammetry, electrochemical impedance spectroscopy, atomic force microscopy and ultraviolet‐visible spectroscopy were used to characterize the enantioselective phenomenon. The results indicated that the binding effect between L ‐PA and DNA‐MWNTs was stronger than that of D ‐PA and DNA‐MWNTs. In addition, the influencing factors of the modified electrodes were systematically investigated. The modified electrodes exhibited a linear response towards PA enantiomers from 1.0×10?1 to 1.0×10?8 mol L?1 and detection limits of 3.1×10?9 and 3.3×10?8 mol L?1 for L ‐PA and D ‐PA, respectively.  相似文献   

16.
A glassy carbon electrode (GCE) modified with Mg‐Al‐SDS hydrotalcite‐like clay (SDS‐HTLC) was used for the sensitive voltammetric determination of 2‐nitrophenol (2‐NP) utilizing the oxidation process. The results indicate the prepared modified electrode has an excellent electrocatalytic activity toward 2‐NP oxidation, lowering the oxidation overpotential and increasing the oxidation current. Under optimal conditions, the oxidation current was proportional to 2‐NP concentration in the range from 1.0×10?6 to 6.0×10?4 M with the detection limit of 5.0×10?7 M by DPV (S/N=3). The fabricated electrode was applied for 2‐NP determination in water samples and the recovery for these samples was from 95.6 to 103.5%.  相似文献   

17.
A novel potentiometric sensor based on screen‐printed carbon electrode covered with electropolymerized polyaniline (PANI) and unsubstituted pillar[5]arene as ionophore has been developed and tested in potentiometric measurements of pH and metal ions. The introduction of pillar[5]arene improved the reversibility of the pH response in the range from 2.0 to 9.0 with the slope of 45 mV/pH. Among metal cations, the response to Fe3+ and Ag+ ions was referred to PANI redox conversion whereas the signal toward Cu2+ in the range from 1.0×10?6 to 1.0×10?2 M (limit of detection (LOD) 3.0×10?7 M) to specific interaction with the macrocycle.  相似文献   

18.
The direct electrochemistry of glucose oxidase (GOD) immobilized on the designed titanium carbide‐Au nanoparticles‐fullerene C60 composite film modified glassy carbon electrode (TiC‐AuNPs‐C60/GCE) and its biosensing for glucose were investigated. UV‐visible and Fourier‐transform infrared spectra of the resulting GOD/TiC‐AuNPs‐C60 composite film suggested that the immobilized GOD retained its original structure. The direct electron transfer behaviors of immobilized GOD at the GOD/TiC‐AuNPs‐C60/GCE were investigated by cyclic voltammetry in which a pair of well‐defined, quasi‐reversible redox peaks with the formal potential (E0′) of ‐0.484 V (vs. SCE) in phosphate buffer solution (0.05 M, pH 7.0) at the scan rate of 100 mV·s?1 were obtained. The proposed GOD modified electrode exhibited an excellent electrocatalytic activity to the reduction of glucose, and the currents of glucose reduction peak were linearly related to glucose concentration in a wider linearity range from 5.0 × 10?6 to 1.6 × 10?4 M with a correlation coefficient of 0.9965 and a detection limit of 2.0 × 10?6 M (S/N = 3). The sensitivity and the apparent Michaelis‐Menten constant (KMapp) were determined to be 149.3 μA·mM?1·cm?2 and 6.2 × 10?5 M, respectively. Thus, the protocol will have potential application in studying the electron transfer of enzyme and the design of novel electrochemical biosensors.  相似文献   

19.
《Electroanalysis》2005,17(9):749-754
A sensitive electrochemical method for the determination of simvastatin (SV) was established, based on the enhanced oxidation of SV at a multi‐walled carbon nanotubes‐dihexadecyl hydrogen phosphate composite modified glassy carbon electrode (MWNTs‐DHP/GCE). The voltammetric studies showed that MWNTs instead of DHP or GCE could effectively catalyze the oxidation of SV. The dependence of oxidation current on SV concentration was explored under optimal conditions, which exhibited a good linear relationship in the range of 1.0×10?7–7.5×10?6 M. The detection limit of SV was also examined and a low value of 5.0×10?8 M was obtained for 5 min accumulation (σ=3). This electrode was applied to the detection of SV in drug forms and the results were in accordance with those obtained by UV spectroscopy.  相似文献   

20.
Based on single‐walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE/SWCNTs), a novel method was presented for the determination of L ‐tyrosine. The GCE/SWCNTs exhibited remarkable catalytic and enhanced effects on the oxidation of L ‐tyrosine. In 0.10 mol/L citric acid‐sodium citrate buffer solution, the oxidation potential of L ‐tyrosine shifted negatively from +1.23 V at bare GCE to +0.76 V at GCE/SWCNTs. Under the optimized experimental conditions, the linear range of the modified electrode to the concentration of L ‐tyrosine was 5.0×10?6–2.0×10?5 mol/L (R1=0.9952) and 2.7×10?5–2.6×10?4 mol/L (R2=0.9998) with a detection limit of 9.3×10?8 mol/L. The kinetic parameters such as α (charge transfer coefficient) and D (diffusion coefficient) were evaluated to be 0.66, 9.82×10?5 cm2 s?1, respectively. And the electrochemical mechanism of L ‐tyrosine was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号