首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the design and preparation of multifunctional hybrid nanomaterials through the stabilization of gold nanoparticles with thiol-functionalised hybrid organic–inorganic polyoxometalates (POMs). The covalent attachment of the hybrid POM forms new nanocomposites that are stable at temperatures and pH values which destroy analogous electrostatically functionalised nanocomposites. Photoelectrochemical analysis revealed the unique photochemical and redox properties of these systems.  相似文献   

2.
New forms of hybrid multiaxial nanocomposites with enhanced mechanical and stab resisting properties are presented. This study is motivated by the lack of knowledge in the study of the multiaxial fabric nanocomposites with two modified thermoplastic matrices for antiballistic protection. Introduction of 5 wt.% silica nanoparticles in the composite of polyurethane/p‐aramid/poly (vinyl butyral) leads to significant improvement in mechanical properties, and the addition of silane as a coupling agents and glutaraldehyde as a crosslinking agents yielded maximal values of storage modulus, tensile modulus and anti‐stabbing properties for hybrid nanocomposites. Ballistic resistance testing and penetration depth of the hybrid nanocomposites were visualized using image analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Considerable attention has been paid to hybrid organic–inorganic nanocomposites for designing new optical materials. Herein, we demonstrate the energy and hole transfer of hybrid hole‐transporting α‐sexithiophene (α‐STH) nanoparticle–CdTe quantum dot (QD) nanocomposites using steady‐state and time‐resolved spectroscopy. Absorption and photoluminescence studies confirm the loss of planarity of the α‐sexithiophene molecule due to the formation of polymer nanoparticles. Upon photoexcitation at 370 nm, a nonradiative energy transfer (73 %) occurs from the hole‐transporting α‐STH nanoparticles to the CdTe nanoparticles with a rate of energy transfer of 6.13×109 s?1. However, photoluminescence quenching of the CdTe QDs in the presence of the hole‐transporting α‐STH nanoparticles is observed at 490 nm excitation, which is due to both static‐quenching and hole‐transfer‐based dynamic‐quenching phenomena. The calculated hole‐transporting rate is 7.13×107 s?1 in the presence of 42×10?8 M α‐STH nanoparticles. Our findings suggest that the interest in α‐sexithiophene (α‐STH) nanoparticle–CdTe QD hybrid nanocomposites might grow in the coming years because of various potential applications, such as solar cells, optoelectronic devices, and so on.  相似文献   

4.
A new and universal synthetic strategy to hybridize metal oxides and conduct polymer nanocomposites has been proposed in this work. The simultaneous reaction process, which includes the generation of metal oxide layers, the oxidation polymerization of monomers, and the in situ formation of polymer–metal oxides sandwich structure is successfully realized and results in the unique hybrid polyaniline (PANI)‐intercalated molybdenum oxide nanocomposites. The peroxomolybdate proved to play a dual role as the precursor of the inorganic hosts and the oxidizing agent for polymerization. The as‐obtained hybrid nanocomposites present a flexible lamellar structure by oriented assembly of conductive PANI chains in the MoO3 interlayer, and thus inherit excellent electrical performance and possess the potential of active electrode materials for electrochemical energy storage. Such uniform lamellar structure together with the anticipated high conductivity of the hybrid PANI/MoO3 nanocomposites afford high specific capacitance and good stability during the charge–discharge cycling for supercapacitor application.  相似文献   

5.
This research is to develop transparent and UV‐shielding Epoxy/SR‐494/APTMS/ZnO nanocomposite materials with high heat resistant and anti‐static properties. Firstly, the APTMS (3‐(acryloxypropyl)trimethoxysilane) performs the silanol intermediates by hydrolysis in pH 4~5 acid solution. The inorganic anti‐static fillers of powder ZnO can be successfully coupled and crosslinked to Epoxy/SR‐494 organic matrixes with these silanols of APTMS coupling agents. The remained active ‐OH functional groups of the APTMS/ZnO complexes can network bonding with epoxy prepolymers. Therefore, the Epoxy/APTMS/ZnO complexes with good anti‐static composites will be successfully prepared. Finally, in order to improve the thermal resistant and mechanical properties, the polyfunctionalized SR‐494 (pentaery‐thritol tetracrylate) acrylate monomers and the Epoxy/APTMS/ZnO composites are chain polymerized to form an excellent cross‐linking structure of organic/inorganic nanocomposites. The chemical bonding formation and the best weight contents of reaction components are identified by FT‐IR spectra. The thermal resistance, transparence, surface electric resistance, and hardness of these nanocomposites are measured by TGA, DSC, UV‐Visible, surface resistant meter, and pencil hardness tester respectively. Experimental results show that these nanocomposites have 90% transmittance and the best Td value is 389.3 °C which is 109.0 °C and 78.6 °C higher than those of pure epoxy resin and pure SR‐494 acrylate resin respectively. The glass transition temperature is not detected below 200 °C. The surface electric resistances of Epoxy/SR‐494/APTMS/ZnO hybrid thin films are decreased from 3.14 × 1013 to 5.13 × 107 Ω/cm2. The hardness of these nanocomposites is as high as 8H, and those hybrid films have high UV‐shielding properties. The morphology structures of the hybrid thin films are estimated by SEM. The results show that the optical thin films are evenly distributed with inorganic colloidal particles and the average particle size of these nanocomposites is 45~80 nm, while the powder ZnO (particle size: 2~5 μm) was used as inorganic filler.  相似文献   

6.
Sulfonated polyaniline‐silver (SPAni‐Ag) hybrid nanocomposites have been synthesized by the in situ reduction using a UV‐curing polymerization method without using any reducing or binding agent. An aqueous solution of aniline and orthoanilinic acid (OA) comonomers, a free‐radical oxidant and silver metal salts were irradiated by UV rays. Reduction of the silver salt in aqueous aniline and OA leads to the formation of silver particles which in turn catalyze the oxidation of comonomers to sulfonated polyaniline (SPAni). The resultant SPAni‐Ag nanocomposites were characterized by using different spectroscopy analyses like UV–visible (UV–Vis), X‐ray diffraction (XRD) and infrared spectroscopy. The absorption bands were revealed to be optically active and the peaks blue‐shifted due to the presence of metallic silver within the SPAni matrix. The XRD patterns displayed both the broad amorphous polymeric and sharp metallic peaks. Scanning electron microscopy and transmission electron microscopy of the nanocomposites showed a uniform size distribution with spherical and granular morphology. Thermogravimetric analysis revealed that the nanocomposites had a better thermal stability than the bulk SPAni. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
1,4‐Cyclohexadiene derivatives are easily accessed via transition‐metal cycloadditions of 1,3‐dienes with alkynes. The mild reaction conditions of several transition‐metal‐catalysed reactions allows the incorporation of various functional groups to access functionalised 1,4‐cyclohexadienes. The control of the regiochemistry in the intermolecular cobalt‐catalysed Diels–Alder reaction is realised utilising different ligand designs. The functionalised 1,4‐cyclohexadiene derivatives are valuable building blocks in follow‐up transformations. Finally, the oxidation of the 1,4‐cyclohexadienes can be accomplished under mild conditions to generate the corresponding arene derivatives.  相似文献   

8.
A novel approach to the preparation of polyethylene (PE) nanocomposites, with montmorillonite/silica hybrid (MT‐Si) supported catalyst, was developed. MT‐Si was prepared by depositing silica nanoparticles between galleries of the MT. A common zirconocene catalyst [bis(cyclopentadienyl)zirconium dichloride/methylaluminoxane] was fixed on the MT‐Si surface by a simple method. After ethylene polymerization, two classes of nanofillers (clay layers and silica nanoparticles) were dispersed concurrently in the PE matrix and PE/clay–silica nanocomposites were obtained. Exfoliation of the clay layers and dispersion of the silica nanoparticles were examined with transmission electron microscopy. Physical properties of the nanocomposites were characterized by tensile tests, dynamic mechanical analysis, and DSC. The nanocomposites with a low nanofiller loading (<10 wt %) exhibited good mechanical properties. The nanocomposite powder produced with the supported catalyst had a granular morphology and a high bulk density, typical of a heterogeneous catalyst system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 941–949, 2004  相似文献   

9.
The single‐step preparation of highly ordered mesoporous silica hybrid nanocomposites with conjugated polymers was explored using a novel cationic 3,4‐propylenedioxythiophene (ProDOT) surfactant (PrS). The method does not require high‐temperature calcination or a washing procedure. The combination of self‐assembly of the silica surfactant and in situ polymerization of the ProDOT tail is responsible for creation of the mesoporosity with ultralarge pores, large pore volume, and electroactivity. As this novel material exhibits excellent textural parameters together with electrical conductivity, we believe that this could find potential applications in various fields. This novel concept of creating mesoporosity without a calcination process is a significant breakthrough in the field of mesoporous materials and the method can be further generalized as a rational preparation of various mesoporous hybrid materials having different structures and pore diameters.  相似文献   

10.
Organic–inorganic hybrid nanocomposites composed of conductive polypyrrole (PPy) and surface modified silica (SiO2) were successfully prepared through an in situ chemical oxidative polymerization in supercritical carbon dioxide (scCO2). SiO2 nanoparticles were surface modified using 3‐methacryloxypropyltrimethoxysilane (MPTMS) in order to disperse well in the medium. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that the SiO2 nanoparticles were encapsulated into the polymer. UV‐visible spectra of the diluted colloidal dispersions of PPy/SiO2 hybrid nanocomposites were similar to those of PPy system. Fourier transform infrared spectroscopy (FT‐IR) suggested the strong interaction between PPy and SiO2. Surface characterizations of nanocomposites were described by X‐ray photoelectron spectroscopy (XPS). The nanocomposites synthesized in scCO2 have been shown to possess higher electrical conductivity and thermal stability. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Functional copolymer/organo‐silicate [N,N′‐dimethyldodecyl ammonium cation surface modified montmorillonite (MMT)] layered nanocomposites have been synthesized by interlamellar complex‐radical copolymerization of pre‐intercalated itaconic acid (IA)/organo‐MMT complex as a “nanoreactor” with n‐butyl methacrylate (BMA) as an internal plasticization comonomer in the presence of radical initiator. Comparative analysis of physical structure, dynamic mechanical analysis parameters, and surface morphology of the obtained copolymers and their nanocomposites indicated that the interlayer H‐bonding and flexible n‐butyl ester linkages take place an important role in interlamellar copolymerization and intercalation/exfoliation of copolymer chains. It was found that nanocomposites' dynamic mechanical properties strongly depended on the force of interfacial H‐bonding and amount of BMA units. An increase in both of these parameters leads to enhanced intercalation and exfoliation in situ processes of copolymer chains and the formation of hybrid nanocomposites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Adding colloidal nanoparticles into liquid‐crystal media has become a promising pathway either to enhance or to introduce novel properties for improved device performance. Here we designed and synthesized new colloidal hybrid silica nanoparticles passivated with a mesogenic monolayer on the surface to facilitate their organo‐solubility and compatibility in a liquid‐crystal host. The resulting nanoparticles were identified by 1H NMR spectroscopy, TEM, TGA, and UV/Vis techniques, and the hybrid nanoparticles were doped into a dual‐frequency cholesteric liquid‐crystal host to appraise both their compatibility with the host and the effect of the doping concentration on their electro‐optical properties. Interestingly, the silica‐nanoparticle‐doped liquid‐crystalline nanocomposites were found to be able to dynamically self‐organize into a helical configuration and exhibit multi‐stability, that is, homeotropic (transparent), focal conic (opaque), and planar states (partially transparent), depending on the frequency applied at sustained low voltage. Significantly, a higher contrast ratio between the transparent state and scattering state was accomplished in the nanoparticle‐embedded liquid‐crystal systems.  相似文献   

13.
Carbon materials that are intrinsically co‐doped with nitrogen and sulfur heteroatoms are synthesised by facile annealing of nitrile‐functionalised thiazolium salts. Extremely high degrees of doping are achieved, especially for sulfur. The method further allows for direct tuning of the amounts of both N and S, establishing a new synthetic pathway in the emerging field of S‐doped carbon materials.  相似文献   

14.
《中国化学会会志》2017,64(6):589-606
Metal/metal oxide‐decorated multiwalled carbon nanotubes (MWCNTs ) have been found to be effective over various catalysts because of the synergistic, hybrid, physical, and chemical properties of such nanotubes. These properties make them highly active catalytic tools with excellent chemoselectivity, low catalyst loading, and high recyclability of the catalyst. Here, we discuss some recent findings related to the following topics: (1) synthesis of metal/metal oxide‐decorated MWCNTs , (2) characterization techniques of heterogeneous nanocomposites, and (3) application of these metal/metal oxide nanocomposites for the synthesis of heterocyclic compounds. This review emphasizes the main requirements for developing new nanocomposites for the synthesis of pharmaceutically important heterocycles.  相似文献   

15.
A facile and electrostatically driven approach has been developed to prepare bicontinuous polymer nanocomposites that is based on the polyoxometalate (POM) macroion induced phase transition of PS‐b ‐P2VP from an initial lamellar phase to a stable bicontinuous phase. The multi‐charged POMs can electrostatically cross‐link P2VP blocks and give rise to bicontinuous phases in which the POM hybrid conductive domains occupy a large volume fraction of more than 50 %. Furthermore, the POMs can give rise to high proton conductivity and serve as nanoenhancers, endowing the bicontinuous nanocomposites with a conductivity of 0.1 mS cm−1 and a Young's modulus of 7.4 GPa at room temperature; these values are greater than those of pristine PS‐b ‐P2VP by two orders of magnitude and a factor of 1.8, respectively. This approach can provide a new concept based on electrostatic control to design functional bicontinuous polymer materials.  相似文献   

16.
Epoxy nanocomposites combining high toughness with advantageous functional properties are needed in many fields. However, fabricating high‐performance homogeneous epoxy nanocomposites with traditional methods remains a great challenge. Nacre with outstanding fracture toughness presents an ideal blueprint for the development of future epoxy nanocomposites. Now, high‐performance epoxy‐graphene layered nanocomposites were demonstrated with ultrahigh toughness and temperature‐sensing properties. These nanocomposites are composed of ca. 99 wt % organic epoxy, which is in contrast to the composition of natural nacre (ca. 96 wt % inorganic aragonite). These nanocomposites are named an inverse artificial nacre. The fracture toughness reaches about 4.2 times higher than that of pure epoxy. The electrical resistance is temperature‐sensitive and stable under various humidity conditions. This strategy opens an avenue for fabricating high‐performance epoxy nanocomposites with functional properties.  相似文献   

17.
The synthesis and characterisation of new capped silica mesoporous nanoparticles for on‐command delivery applications is reported. Functional capped hybrid systems consist of MCM‐41 nanoparticles functionalised on the external surface with polyesters bearing azobenzene derivatives and rhodamine B inside the mesopores. Two solid materials, Rh‐PAzo8‐S and Rh‐PAzo6‐S, containing two closely related polymers, PAzo8 and PAzo6, in the pore outlets have been prepared. Materials Rh‐PAzo8‐S and Rh‐PAzo6‐S showed an almost zero release in water due to steric hindrance imposed by the presence of anchored bulky polyesters, whereas a large delivery of the cargo was observed in the presence of an esterase enzyme due to the progressive hydrolysis of polyester chains. Moreover, nanoparticles Rh‐PAzo8‐S and Rh‐PAzo6‐S were used to study the controlled release of the dye in intracellular media. Nanoparticles were not toxic for HeLa cells and endocytosis‐mediated cell internalisation was confirmed by confocal microscopy. Furthermore, the possible use of capped materials as a drug‐delivery system was demonstrated by the preparation of a new mesoporous silica nanoparticle functionalised with PAzo6 and loaded with the cytotoxic drug camptothecin (CPT‐PAzo6‐S). Following cell internalisation and lysosome resident enzyme‐dependent gate opening, CPT‐PAzo6‐S induced CPT‐dependent cell death in HeLa cells.  相似文献   

18.
Na‐ion batteries have been attracting intensive investigations as a possible alternative to Li‐ion batteries. Herein, we report the synthesis of SnS2 nanoplatelet@graphene nanocomposites by using a morphology‐controlled hydrothermal method. The as‐prepared SnS2/graphene nanocomposites present a unique two‐dimensional platelet‐on‐sheet nanoarchitecture, which has been identified by scanning and transmission electron microscopy. When applied as the anode material for Na‐ion batteries, the SnS2/graphene nanosheets achieved a high reversible specific sodium‐ion storage capacity of 725 mA h g?1, stable cyclability, and an enhanced high‐rate capability. The improved electrochemical performance for reversible sodium‐ion storage could be ascribed to the synergistic effects of the SnS2 nanoplatelet/graphene nanosheets as an integrated hybrid nanoarchitecture, in which the graphene nanosheets provide electronic conductivity and cushion for the active SnS2 nanoplatelets during Na‐ion insertion and extraction processes.  相似文献   

19.
Inexpensive and readily available metal foils have been extracted and sculptured into nanocomposites without the expense of applied energy. The unwanted corrosion phenomenon has been contrarily utilized to realize desirable 3D nanostructures through a corrosion‐mediated self‐assembly (CMSA) method, which is unattainable by conventional 2D patterning routes. By virtue of electrochemical dissolution/re‐deposition initiated by brass corrosion, ionic derivatives (Zn2+ and Cu2+) are continuously supplied and seized by etchant ions (PO43?) to self‐assemble into well‐defined nanocomposites. Beyond 3D geometry patterning, CMSA enables arbitrarily tailoring of structures and chemical compositions with in situ multiphase amalgamation of hybrid materials, which improves homogeneity and thus mitigates phase separation issues. Importantly, the CMSA technique is demonstrated on transition metals for functional photocatalytic applications.  相似文献   

20.
Polyamide and polystyrene particles were coated with titanium dioxide films by atomic layer deposition (ALD) and then melt‐compounded to form polymer nanocomposites. The rheological properties of the ALD‐created nanocomposite materials were characterized with a melt flow indexer, a melt flow spiral mould, and a rotational rheometer. The results suggest that the melt flow properties of polyamide nanocomposites were markedly better than those of pure polyamide and polystyrene nanocomposites. Such behavior was shown to originate in an uncontrollable decrease in the polyamide molecular weight, likely affected by a high thin‐film impurity content, as shown in gel permeation chromatography (GPC) and scanning electron microscope (SEM) equipped with an energy‐dispersive spectrometer. Transmission electron microscope image showed that a thin film grew on both studied polymer particles, and that subsequent melt‐compounding was successful, producing well dispersed ribbon‐like titanium dioxide with the titanium dioxide filler content ranging from 0.06 to 1.12 wt%. Even though we used nanofillers with a high aspect ratio, they had only a minor effect on the tensile and flexural properties of the polystyrene nanocomposites. The mechanical behavior of polyamide nanocomposites was more complex because of the molecular weight degradation. Our approach here to form polymeric nanocomposites is one way to tailor ceramic nanofillers and form homogenous polymer nanocomposites with minimal work‐related risks in handling powder form nanofillers. However, further research is needed to gauge the commercial potential of ALD‐created nanocomposite materials. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号