首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Prototype testing of perchlorate‐free hand‐held signal illuminants for the US Army’s M126 A1 red‐star and M195 green‐star parachute illuminants are described. Although previous perchlorate‐free variants for these items have been developed based on high‐nitrogen compounds that are not readily available, the new formulations consist of anhydrous 5‐aminotetrazole as the suitable perchlorate replacement. Compared to the perchlorate‐containing control, the disclosed illuminants exhibited excellent stabilities toward various ignition stimuli and had excellent pyrotechnic performance. The illuminants are important from both military and civil fireworks perspectives, as the perchlorate‐free nature of the illuminants adequately address environmental concerns associated with perchlorate‐containing red‐ and green‐light‐emitting illuminants.  相似文献   

2.
3.
The development of perchlorate‐free hand‐held signal illuminants for the US Army’s M195 green star parachute is described. Compared with the perchlorate‐containing control, the optimized perchlorate‐free illuminants were less sensitive toward various ignition stimuli while offering comparable burn times and visible‐light outputs. The results were also important from the perspective of civilian fireworks because the development of perchlorate‐free illuminants remains an important objective of the commercial fireworks industry.  相似文献   

4.
5.
The development of a red, chlorine‐free pyrotechnic illuminant of high luminosity and spectral purity was investigated. Red‐light emission based solely on transient SrOH(g) has been achieved by using either 5‐amino‐1H‐tetrazole or hexamine to deoxidize the combustion flame of a Mg/Sr(NO3)2/Epon‐binder composition and reduce the amount of both condensed and gaseous SrO, which emits undesirable orange‐red light. The new formulations were found to possess high thermal onset temperatures. Avoiding chlorine in these formulations eliminates the risk of the formation of PCBs, PCDDs, and PCDFs. This finding, hence, will have a great impact on both military pyrotechnics and commercial firework sectors.  相似文献   

6.
All 5,5′‐hydrazinebistetrazoles reported in the literature are sensitive to oxidation and react with atmospheric oxygen to yield the corresponding 5,5′‐azobistetrazolates on time. Herewith, we report on the synthesis of the free acid 5,5′‐hydrazinebistetrazole (HBT) which showed to be stable on air for extended periods of time. The compound was fully characterized by analytical and spectroscopic methods and its X‐ray structure was determined by diffraction techniques. Besides, we determined its explosive properties by BAM methods and calculated its heat of formation (+414 kJ mol?1), detonation velocity (8523 m s?1) and detonation pressure (27.7 GPa). HBT proved to be very safe to handle (impact sensitivity: >30 J, friction sensitivity: ~108 N) and was used as a starting material for the synthesis of some already reported 5,5′‐azobistetrazolates: NH4+, NH2NH3+, Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+ and Ba2+.  相似文献   

7.
A planar energetic molecule with high density, 5,5′‐dinitramino‐3,3′‐azo‐1,2,4‐oxadiazole ( 4 ), was obtained by the nitration of 5,5′‐diamino‐3,3′‐azo‐1,2,4‐oxadiazole using 100 % nitric acid. In addition, selected nitrogen‐rich salts were prepared. Of them, the neutral compound 4 and its hydroxylammonium salt, 6 , were further confirmed by single‐crystal X‐ray diffraction. Physicochemical and energetic properties including density, thermal stability, and sensitivity were investigated. The energetic performance from the calculated heats of formation and experimental densities indicates that many of them have potential applications as energetic materials.  相似文献   

8.
Distamycin‐based tetrapeptide ( 1 ) was covalently tethered to both ends of the central dihydroxyazobenzene moiety at either the 2,2′ or 4,4′ positions. This afforded two isomeric, distamycin–azobenzene–distamycin systems, 2 (para) and 3 (ortho), both of them being photoisomerizable. Illumination of these conjugates in solution at approximately 360 nm induced photoisomerization and the time course of the process was followed by UV/Vis and 1H NMR spectroscopy. The kinetics of the thermal reversion at various temperatures of cis to trans isomers of the conjugates obtained after photoillumination were also examined. This afforded the respective thermal‐activation parameters. Both the molecular architecture and the location of the substituent around the core azobenzene determined the rate and activation‐energy barrier for the cis‐to‐trans back‐isomerization of these conjugates in solution. Duplex–DNA binding of the conjugates and the changes in DNA‐binding efficiency upon photoisomerization was also examined by CD spectroscopy, thermal denaturation studies, and a Hoechst displacement assay. The conjugate 2 showed higher DNA‐binding affinity and a greater change in the DNA‐binding efficiency upon photoisomerization compared with its 2,2′‐disubstituted counterpart. The experimental findings were substantiated by using molecular‐docking studies involving each conjugate with a model duplex d[(GC(AT)10CG)]2 DNA molecule.  相似文献   

9.
The development of a red‐light‐emitting pyrotechnic illuminant has garnered interest from the pyrotechnics community owing to potential regulations by the United States Environmental Protection Agency (U.S. EPA) regarding the use of strontium and chlorinated organic materials. To address these environmental regulatory concerns, the development of lithium‐based red‐light‐emitting pyrotechnic compositions of high purity and color quality is described. These formulations do not contain strontium or chlorinated organic materials. Rather, the disclosed formulations are based on a non‐hygroscopic dilithium nitrogen‐rich salt that serves as both oxidizer and red colorant. These formulations are likely to draw interest from the civilian fireworks and military pyrotechnics communities for further development as they both have a vested interest in the development of environmentally conscious formulations.  相似文献   

10.
11.
Two novel cyclic azobenzenophanes (SC, RC) with functional handles have been synthesized efficiently by a Glaser coupling reaction. Through a Suzuki coupling reaction, alternating ring/linear polymers with rigid (conjugated)/flexible (unconjugated) bridges were obtained from the resultant cyclic azobenzenophanes. The optical activities of linear, cyclic, and macromolecular binaphethyl–azobenzene derivatives were investigated by UV/Vis and circular dichroism (CD) spectra and the time‐dependent (TD)‐DFT method. Experimental results and theoretical analyses indicated that the cyclic configurations exhibited better chiroptical features than the others, and the reverse conformation and difference of dextro‐/levo‐rotation of azobenzenophanes were detected by comparing linear and cyclic structures, which provides an opportunity for the optical‐rotation‐controlled “smart” materials systems in future.  相似文献   

12.
13.
The synthesis of 5,5′‐diamino‐3,3′‐azo‐1H‐1,2,4‐triazole ( 3 ) by reaction of 5‐acetylamino‐3‐amino‐1H‐1,2,4‐triazole ( 2 ) with potassium permanganate is described. The application of the very straightforward and efficient acetyl protection of 3,5‐diamino‐1H‐1,2,4‐triazole allows selective reactions of the remaining free amino group to form the azo‐functionality. Compound 3 is used as starting material for the synthesis of 5,5′‐dinitrimino‐3,3′‐azo‐1H‐1,2,4‐triazole ( 4 ), which subsequently reacted with organic bases (ammonia, hydrazine, guanidine, aminoguanidine, triaminoguanidine) to form the corresponding nitrogen‐rich triazolate salts ( 5 – 9 ). All substances were fully characterized by IR and Raman as well as multinuclear NMR spectroscopy, mass spectrometry, and differential scanning calorimetry. Selected compounds were additionally characterized by low temperature single‐crystal X‐ray diffraction measurements. The heats of formation of 4 – 9 were calculated by the CBS‐4M method to be 647.7 ( 4 ), 401.2 ( 5 ), 700.4 ( 6 ), 398.4 ( 7 ), 676.5 ( 8 ), and 1089.2 ( 9 ) kJ · mol–1. With these values as well as the experimentally determined densities several detonation parameters were calculated using both computer codes EXPLO5.03 and EXPLO5.04. In addition, the sensitivities of 5 – 9 were determined by the BAM drophammer and friction tester as well as a small scale electrical discharge device.  相似文献   

14.
15.
This paper describes the development of novel aromatic platforms for supramolecular construction. By the Suzuki cross‐coupling protocol, a variety of functionalized m‐terphenyl derivatives were prepared (Schemes 1–4). Macrolactamization of bis(ammonium salt) (S,S)‐ 6 with bis(acyl halide) 7 afforded the macrocyclic receptor (S,S)‐ 2 (Scheme 1), which was shown by 1H‐NMR titration studies to form ‘nesting' complexes of moderate stability (Ka between 130 and 290 M ?1, 300 K) with octyl glucosides 13 – 15 (Fig. 2) in the noncompetitive solvent CDCl3. Suzuki cross‐coupling starting from 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl provided access to a novel series of extended aromatic platforms (Scheme 5) for cleft‐type (Fig. 1) and macrotricyclic receptors such as (S,S,S,S)‐ 1 . Although mass‐spectral evidence for the formation of (S,S,S,S)‐ 1 by macrolactamization between the two functionalized 3,3′,5,5′‐tetraaryl‐1,1′‐biphenyl derivatives (S,S)‐ 33 and 36 was obtained, the 1H‐ and 13C‐NMR spectra of purified material remained rather inconclusive with respect to both purity and constitution. The versatile access to the novel, differentially functionalized 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl platforms should ensure their wide use in future supramolecular construction.  相似文献   

16.
A new family of high‐nitrogen compounds, that is, polyazido‐ and polyamino‐substituted N,N′‐azo‐1,2,4‐triazoles, were synthesized in a safe and convenient manner and fully characterized. The structures of 3,3′,5,5′‐tetra(azido)‐4,4′‐azo‐1,2,4‐triazole ( 15 ) and 3,3′,5,5′‐tetra(amino)‐4,4′‐azo‐1,2,4‐triazole ( 23 ) were also confirmed by X‐ray diffraction. Differential scanning calorimetry (DSC) was performed to determine their thermal stability. Their heats of formation and density, which were calculated by using Gaussian 03, were used to determine the detonation performances of the related compounds (EXPLO 5.05). The heats of formation of the polyazido compounds were also derived by using an additive method. Compound 15 has the highest heat of formation (6933 kJ kg?1) reported so far for energetic compounds and a detonation performance that is comparable to that of octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX), while compound 23 has a decomposition temperature of up to 290 °C.  相似文献   

17.
Electron delocalization of new mixed‐valent (MV) systems with the aid of lateral metal chelation is reported. 2,2′‐Bipyridine (bpy) derivatives with one or two appended di‐p‐anisylamino groups on the 5,5′‐positions and a coordinated [Ru(bpy)2] (bpy=2,2′‐bipyridine), [Re(CO)3Cl], or [Ir(ppy)2] (ppy=2‐phenylpyridine) component were prepared. The single‐crystal molecular structure of the bis‐amine ligand without metal chelation is presented. The electronic properties of these complexes were studied and compared by electrochemical and spectroscopic techniques and DFT/TDDFT calculations. Compounds with two di‐p‐anisylamino groups were oxidized by a chemical or electrochemical method and monitored by near‐infrared (NIR) absorption spectral changes. Marcus–Hush analysis of the resulting intervalence charge‐transfer transitions indicated that electron coupling of these mixed‐valent systems is enhanced by metal chelation and that the iridium complex has the largest coupling. TDDFT calculations were employed to interpret the NIR transitions of these MV systems.  相似文献   

18.
19.
Rh‐containing metallacycles, [(TPA)RhIII2‐(C,N)‐CH2CH2(NR)2‐]Cl; TPA=N,N,N,N‐tris(2‐pyridylmethyl)amine have been accessed through treatment of the RhI ethylene complex, [(TPA)Rh(η2CH2CH2)]Cl ([ 1 ]Cl) with substituted diazenes. We show this methodology to be tolerant of electron‐deficient azo compounds including azo diesters (RCO2N?NCO2R; R=Et [ 3 ]Cl, R=iPr [ 4 ]Cl, R=tBu [ 5 ]Cl, and R=Bn [ 6 ]Cl) and a cyclic azo diamide: 4‐phenyl‐1,2,4‐triazole‐3,5‐dione (PTAD), [ 7 ]Cl. The latter complex features two ortho‐fused ring systems and constitutes the first 3‐rhoda‐1,2‐diazabicyclo[3.3.0]octane. Preliminary evidence suggests that these complexes result from N–N coordination followed by insertion of ethylene into a [Rh]?N bond. In terms of reactivity, [ 3 ]Cl and [ 4 ]Cl successfully undergo ring‐opening using p‐toluenesulfonic acid, affording the Rh chlorides, [(TPA)RhIII(Cl)(κ1‐(C)‐CH2CH2(NCO2R)(NHCO2R)]OTs; [ 13 ]OTs and [ 14 ]OTs. Deprotection of [ 5 ]Cl using trifluoroacetic acid was also found to give an ethyl substituted, end‐on coordinated diazene [(TPA)RhIII2‐(C,N)‐CH2CH2(NH)2‐]+ [ 16 ]Cl, a hitherto unreported motif. Treatment of [ 16 ]Cl with acetyl chloride resulted in the bisacetylated adduct [(TPA)RhIII2‐(C,N)‐CH2CH2(NAc)2‐]+, [ 17 ]Cl. Treatment of [ 1 ]Cl with AcN?NAc did not give the Rh?N insertion product, but instead the N,O‐chelated complex [(TPA)RhI ( κ2‐(O,N)‐CH3(CO)(NH)(N?C(CH3)(OCH?CH2))]Cl [ 23 ]Cl, presumably through insertion of ethylene into a [Rh]?O bond.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号