首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermosensitivity of biodegradable and non‐toxic amphiphilic polymer derived from a naturally occurring polypeptide and a derivative of amino acid was first reported. The amphiphilic polymer consisted of poly(γ‐glutamic acid) (γ‐PGA) as a hydrophilic backbone, and L ‐phenylalanine ethyl ester (L ‐PAE) as a hydrophobic branch. Poly(γ‐glutamic acid)‐graft‐L ‐phenylalanine (γ‐PGA‐graft‐L ‐PAE) with grafting degrees of 7–49% were prepared by varying the content of a water‐soluble carbodiimide (WSC). γ‐PGA‐graft‐L ‐PAE with a grafting degree of 49% exhibited thermoresponsive phase transition behavior in an aqueous solution at around 80°C. The copolymers with grafting degrees in the range of 30–49% showed thermoresponsive properties in NaCl solution. A clouding temperature (Tcloud) could be adjusted by changing the polymer concentration and/or NaCl concentration. The thermoresponsive behavior was reversible. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
α‐Methyl glutamic acid (L ‐L )‐, (L ‐D )‐, (D ‐L )‐, and (D ‐D )‐γ‐dimers were synthesized from L ‐ and D ‐glutamic acids, and the obtained dimers were subjected to polycondensation with 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and 1‐hydroxybenzotriazole hydrate as condensation reagents. Poly‐γ‐glutamic acid (γ‐PGA) methyl ester with the number‐average molecular weights of 5000∼20,000 were obtained by polycondensation in N,N‐dimethylformamide in 44∼91% yields. The polycondensation of (L ‐L )‐ and (D ‐D )‐dimers afforded the polymers with much larger |[α]D | compared with the corresponding dimers. The polymer could be transformed into γ‐PGA by alkaline hydrolysis or transesterification into α‐benzyl ester followed by hydrogenation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 732–741, 2001  相似文献   

3.
Polyelectrolyte multilayers assembled from hyaluronic acid (HA) and poly‐l ‐lysine (PLL) are most widely studied showing excellent reservoir characteristics to host molecules of diverse nature; however, thick (HA/PLL)n films are often found cell repellent. By a systematic study of the adhesion and proliferation of various cells as a function of bilayer number “n” a correlation with the mechanical and chemical properties of films is developed. The following cell lines have been studied: mouse 3T3 and L929 fibroblasts, human foreskin primary fibroblasts VH‐Fib, human embryonic kidney HEK‐293, human bone cell line U‐2‐OS, Chinese hamster ovary CHO‐K and mouse embryonic stem cells. All cells adhere and spread well in a narrow “cell‐friendly” window identify in the range of n = 12–15. At n < 12, the film is inhomogeneous and at n > 15, the film is cell repellent for all cell lines. Cellular adhesion correlates with the mechanical properties of the films showing that softer films at higher “n” number exhibiting a significant decrease of the Young's modulus below 100 kPa are weakly adherent to cells. This trend cannot be reversed even by coating a strong cell‐adhesive protein fibronectin onto the film. This indicates that mechanical cues plays a major role for cell behavior, also in respect to biochemical ones.  相似文献   

4.
A facile and green approach is reported to construct pixantrone/poly(γ‐glutamic acid) nanoparticles (PIX/γ‐PGA NPs) as an oral drug delivery system through the complex self‐assembly of polyelectrolyte γ‐PGA and the anticancer drug pixantrone dimaleate (PDM). The complex self‐assembly behavior is investigated in detail. The results demonstrate that PDM can interact with γ‐PGA to conveniently form NPs and the size of NPs can be controlled by adjusting the solution volume ratio of PDM to γ‐PGA. These NPs illustrate their pH‐dependent release behavior, efficient cellular uptake and enhanced drug efficacy through an in vitro release study, flow cytometry, CLSM analysis and the MTT assay. In summary, PIX/γ‐PGA NPs may serve as a promising oral drug delivery system for cancer therapy.

  相似文献   


5.
Current materials used for bone regeneration are usually bioactive ceramics or glasses. Although they bond to bone, they are brittle. There is a need for new materials that can combine bioactivity with toughness and controlled biodegradation. Sol‐gel hybrids have the potential to do this through their nanoscale interpenetrating networks (IPN) of inorganic and organic components. Poly(γ‐glutamic acid) (γ‐PGA) was introduced into the sol‐gel process to produce a hybrid of γ‐PGA and bioactive silica. Calcium is an important element for bone regeneration but calcium sources that are used traditionally in the sol‐gel process, such as Ca salts, do not allow Ca incorporation into the silicate network during low‐temperature processing. The hypothesis for this study was that using calcium methoxyethoxide (CME) as the Ca source would allow Ca incorporation into the silicate component of the hybrid at room temperature. The produced hybrids would have improved mechanical properties and controlled degradation compared with hybrids of calcium chloride (CaCl2), in which the Ca is not incorporated into the silicate network. Class II hybrids, with covalent bonds between the inorganic and organic species, were synthesised by using organosilane. Calcium incorporation in both the organic and inorganic IPNs of the hybrid was improved when CME was used. This was clearly observed by using FTIR and solid‐state NMR spectroscopy, which showed ionic cross‐linking of γ‐PGA by Ca and a lower degree of condensation of the Si species compared with the hybrids made with CaCl2 as the Ca source. The ionic cross‐linking of γ‐PGA by Ca resulted in excellent compressive strength and reduced elastic modulus as measured by compressive testing and nanoindentation, respectively. All hybrids showed bioactivity as hydroxyapatite (HA) was formed after immersion in simulated body fluid (SBF).  相似文献   

6.
Microfluidics is used here for the first time to efficiently tune the growth conditions for understanding the build‐up mechanism of exponentially growing polyelectrolyte (PE) films. The velocity of PE supply and time of interaction can be successfully altered during the layer‐by‐layer assembly. Another advantage of this method is that the deposition of poly‐L ‐lysine/hyaluronic acid (PLL/HA) films in microchannels can be monitored online by fluorescence microscopy. The study demonstrates that PE mass transport to the film surface and diffusion in the film are key parameters affecting PLL/HA film build‐up. Increase of PE supply rate results in a change in the “transition” (exponential‐to‐linear growth) towards higher number of deposition steps, thus indicating a mass transport‐mediated growth mechanism.  相似文献   

7.
Summary: The multilayers of polycation‐based non‐viral DNA nanoparticles and biodegradable poly(L ‐glutamic acid) (PGA) were constructed by a layer‐by‐layer (LbL) technique. Poly(ethyleneimine) (PEI) was used to condense DNA to develop non‐viral DNA nanoparticles. AFM, UV‐visible spectrometry, and TEM measurements revealed that the PEI‐DNA nanoparticles were successfully incorporated into the multilayers. The well‐structured, easily processed multilayers with the non‐viral DNA nanoparticles may provide a novel approach to precisely control the delivery of DNA, which may have great potential for gene therapy applications in tissue engineering, medical implants, etc.

A TEM image of the cross section of a (PGA/PEI‐DNA nanoparticle)20 multilayer.  相似文献   


8.
Multi‐l ‐arginyl‐poly‐l ‐aspartic acid (MAPA), also known as cyanophycin, can incorporate lysine into the side‐chain position of arginine when being prepared with recombinant Escherichia coli. The soluble fraction (sMAPA) is known to display both lower critical solution temperature (LCST) and upper critical solution temperature (UCST) responses at the physiological condition. In an attempt to alter the UCST thermal response, maltodextrin was employed to conjugate onto the amine group of lysine of sMAPA via the formation of Schiff base. In phosphate buffered saline, the UCST of the conjugates appeared around 50–62°C, depending on the extent of conjugation. In contrast to the unmodified sMAPA, the UCST of the conjugate became independent of pH ranging from 1 to 11. Heating the conjugate solution to complete transparent caused a delayed and partial recovery of the original turbidity during subsequent cooling. However, the turbidity can be restored by further precipitation with ethanol or isopropanol followed lyophilization and re‐dissolution. At room temperature, below UCST, the agglomerates exhibited a size of around 200–400 nm under TEM and DLS. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2048–2055  相似文献   

9.
Poly(3‐hexylthiophene)‐b‐poly(γ‐benzyl‐L ‐glutamate) (P3HT‐b‐PBLG) rod–rod diblock copolymer was synthesized by a ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride using a benzylamine‐terminated regioregular P3HT macroinitiator. The opto‐electronic properties of the diblock copolymer have been investigated. The P3HT precursor and the P3HT‐b‐PBLG have similar UV–Vis spectra both in solution and solid state, indicating that the presence of PBLG block does not decrease the effective conjugation length of the semiconducting polythiophene segment. The copolymer displays solvatochromic behavior in THF/water mixtures. The morphology of the diblock copolymer depends upon the solvent used for film casting and annealing results in morphological changes for both films deposited from chloroform and trichlorobenzene.

  相似文献   


10.
A series of pyrenyl‐terminated poly(γ‐benzyl‐l ‐glutamate)s (py‐PBLGs) with controlled polymer molecular weight (MW = 2.3–14.8 kg mol?1) and molecular weight distribution (PDI = 1.17–1.55) have been prepared from 1‐pyrenemethylamine hydrochloride‐mediated ring‐opening polymerization (ROP) of γ‐benzyl‐l ‐glutamic acid based N‐carboxyanhydride (BLG‐NCA). FTIR analysis revealed that the py‐PBLG9 was conformationally heterogeneous with 35.0% α‐helix, 55.6% β‐sheet, and 9.4% random coil conformations in the solid state, whereas the py‐PBLG66 adopts 100% α‐helix conformation. Py‐PBLGs promote the dispersion of SWCNTs in organic solvents and in the PBLG solid through π–π interaction, as evidenced by the Raman spectroscopic studies. WAXD analysis revealed that the SWCNTs significantly affect the ordering of the py‐PBLG self‐assembly: the long range hexagonal packing of py‐PBLG66 rods is notably enhanced by the addition of SWCNTs, whereas the lamellar packing of py‐PGLG9 β‐sheets is weakened. In the hexagonal lattice, the SWCNTs are intercalated parallel to the py‐PBLG66 rods, in contrast to the normal orientation of the SWCNTs with respect to the extended py‐PBLG9 chains in the β‐sheets. The relative packing structure also affects the intermolecular interaction among the PBLGs: SWCNTs promote the interaction among the py‐PBLG9 chains packed in a lamellar structure and weaken the intermolecular interaction among the py‐PBLG66 columnar hexagonal array. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4489–4497  相似文献   

11.
A series of activated urethane‐type derivatives of γ‐benzyl‐L ‐glutamate were synthesized, and their potential as monomers for polypeptide synthesis was investigated. The derivatives of the focus of this work were a series of N‐aryloxycarbonyl‐γ‐benzyl‐L ‐glutamate 1 , of which aryl groups were phenyl, 4‐chlorophenyl, and 4‐nitrophenyl. These urethanes 1 were reactive in polar solvents such as dimethylsulfoxide, N,N‐dimethylformamide (DMF), and N,N‐dimethylacetamide (DMAc), and were efficiently converted into poly(γ‐benzyl‐L ‐glutamate) (poly(BLG)) under mild conditions; at 60 °C without addition of any catalyst. Among the three urethanes, that having 4‐nitrophenoxycarbonyl group 1c was the most reactive to give poly(BLG) efficiently, as was expected from the highly electron deficient nature of the nitrophenoxycarbonyl group. On the other hand, the urethane 1a having phenoxycarbonyl group was also efficiently converted into poly(BLG), in spite of the intrinsically less electrophilicity of the phenoxycarbonyl group. In addition, the successful formation of poly(BLG) by the reaction of 1a favored its diluted concentration (0.1 M) much more than 2.0 M, the optimum initial concentration for 1c . 1H NMR spectroscopic analyses of the reactions in situ revealed that the predominant pathway from 1 to poly(BLG) involved the intramolecular cyclization of 1 into the corresponding N‐carboxyanhydride, with release of phenol and its successive ring‐opening polymerization with release of carbon dioxide. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2649–2657, 2008  相似文献   

12.
A series of OEGylated poly(γ‐benzyl‐l ‐glutamate) with different oligo‐ethylene‐glycol side‐chain length, molecular weight (MW = 8.4 × 103 to 13.5 × 104) and narrow molecular weight distribution (PDI = 1.12–1.19) can be readily prepared from triethylamine initiated ring‐opening polymerization of OEGylated γ‐benzyl‐l ‐glutamic acid based N‐carboxyanhydride. FTIR analysis revealed that the polymers adopted α‐helical conformation in the solid‐state. While they showed poor solubility in water, they exhibited a reversible upper critical solution temperature (UCST)‐type phase behavior in various alcoholic organic solvents (i.e., methanol, ethanol, 1‐propanol, 1‐butanol, 1‐pentanol, and isopropanol). Variable‐temperature UV–vis analysis revealed that the UCST‐type transition temperatures (Tpts) of the resulting polymers were highly dependent on the type of solvent, polymer concentration, side‐ and main‐chain length. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1348‐1356  相似文献   

13.
A tandem IBX‐promoted oxidation of primary alcohol to aldehyde and opening of intermediate β,γ‐diolcarbonate aldehyde to (E)‐γ‐hydroxy‐α,β‐enal has been developed. Remarkably, the carbonate opening delivered exclusively (E)‐olefin and no over‐oxidation of γ‐hydroxy was observed. The method developed has been extended to complete the stereoselective total synthesis of both (S)‐ and (R)‐coriolides and d ‐xylo‐ and d ‐arabino‐C‐20 guggultetrols.  相似文献   

14.
Novel water‐insoluble, and reduction‐responsive nonwoven scaffolds were fabricated from γ‐PGA and tested in cell culture. An electrospinning method was developed to produce scaffolds of fibers with diameters of 0.05–0.5 µm. Crosslinking of the fibers with cystamine in the presence of EDC resulted in water‐insoluble γ‐PGA nonwovens with disulfide crosslinkages. These crosslinked fibers were easily decomposed under physiological conditions using L ‐cysteine, a biocompatible reductant. In vitro experiments with mouse L929 fibroblasts showed good adhesion onto γ‐PGA‐SS fiber matrices and excellent cell proliferation. These γ‐PGA‐SS nonwovens can be used as novel biocompatible and biodegradable scaffolds with reduction‐responsiveness for biomedical or tissue engineering applications.

  相似文献   


15.
Amphiphilic copolymers were obtained by grafting arborescent poly(γ‐benzyl l ‐glutamate) (PBG) cores of generations G1–G3 with polyglycidol, poly(ethylene oxide) (PEO), or poly(l ‐glutamic acid) (PGA) chain segments. The PBG substrates were synthesized by two methods: (1) subjecting PBG samples with a dispersity ? = Mw/Mn < 1.1 to partial acidolysis of the benzyl ester groups, to produce randomly distributed carboxylic acid functionalities, and (2) using PBG chains containing a glutamic acid di‐tert‐butyl ester initiator fragment in the last grafting cycle of the PBG core synthesis, and selective acidolysis of the tert‐butyl ester groups to obtain substrates with carboxylic acid termini. Linear polymers with ? < 1.20 and a primary amine terminus were also synthesized to serve as hydrophilic shell materials: Polyglycidol and PEO by anionic polymerization, and PGA by N‐carboxyanhydride ring‐opening polymerization. These polymers, combined with the two different PGB substrate types, allowed the evaluation of the usefulness of random versus chain‐end grafting in producing arborescent copolymers useful as unimolecular micelles in organic and aqueous media. Size exclusion chromatography served to determine the grafting yield, molar mass, dispersity, and branching functionality of the copolymers. Dynamic light scattering measurements provided information on their aggregation behavior in aqueous environments. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1197–1209  相似文献   

16.
Molecular chirality is ubiquitous in nature. The natural biopolymers, proteins and DNA, preferred a right‐handed helical bias due to the inherent stereochemistry of the monomer building blocks. Here, we are reporting a rare co‐existence of left‐ and right‐handed helical conformations and helix‐terminating property at the C‐terminus within a single molecule of α,γ‐hybrid peptide foldamers composed of achiral Aib (α‐aminoisobutyric acid) and 3,3‐dimethyl‐substituted γ‐amino acid (Adb; 4‐amino‐3,3‐dimethylbutanoic acid). At the molecular level, the left‐ and right‐handed helical screw sense of α,γ‐hybrid peptides are representing a macroscopic tendril perversion. The pronounced helix‐terminating behaviour of C‐terminal Adb residues was further explored to design helix–Schellman loop mimetics and to study their conformations in solution and single crystals. The stereochemical constraints of dialkyl substitutions on γ‐amino acids showed a marked impact on the folding behaviour of α,γ‐hybrid peptides.  相似文献   

17.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate) (PBLG) by ring‐opening polymerizations of γ‐benzyl‐L ‐glutamic acid‐based N‐carboxylanhydrides (NCA‐BLG) using amino‐functionalized SWCNTs (SWCNT‐NH2) as initiators. The SWCNT functionalization has been verified by FTIR spectroscopy and transmission electron microscopy. The FTIR study reveals that surface‐attached PBLGs adopt random‐coil conformations in contrast to the physically absorbed or bulk PBLGs, which exhibit α‐helical conformations. Raman spectroscopic analysis reveals a significant alteration of the electronic structure of SWCNTs as a result of PBLG functionalization. The PBLG‐functionalized SWCNTs (SWCNT‐PBLG) exhibit enhanced solubility in DMF. Stable DMF solutions of SWCNT‐PBLG/PBLG with a maximum SWCNTs concentration of 259 mg L?1 can be readily obtained. SWCNT‐PBLG/PBLG solid composites have been characterized by differential scanning calorimetry, thermogravimetric analysis, wide/small‐angle X‐ray scattering (W/SAXS), scanning electron microscopy, and polarized optical microscopy for their thermal or morphological properties. Microfibers containing SWCNT‐PBLG and PBLG can also be prepared via electrospinning. WAXS characterization reveals that SWCNTs are evenly distributed among PBLG rods in solution and in the solid state where PBLGs form a short‐range nematic phase interspersed with amorphous domains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2340–2350, 2010  相似文献   

18.
α‐l ‐Fucosidases (EC 3.2.1.51) are exo‐glycosidases. On the basis of the multi‐alignment of amino acid sequence, α‐l ‐fucosidases were classified into two families of glycoside hydrolases, GH‐29 and GH‐95. They are responsible for the removal of l ‐fucosyl residues from the non‐reducing end of glycoconjugates. Deficiency of α‐l ‐fucosidase results in Fucosidosis due to the accumulation of fucose‐containing glycolipids, glycoproteins and oligosaccharides in various tissues. Recent studies discovered that the fucosylation levels are increased on the membrane surfaces of many carcinomas, indicating the biological function of α‐l ‐fucosidases may relate to this abnormal cell physiology. Although the gene of human α‐l ‐fucosidase (h‐fuc) was cloned, the recombinant enzyme has rarely been overexpressed as a soluble and active from. We report herein that, with carefully control on the growing condition, an active human α‐l ‐fucosidases (h‐Fuc) was successfully expressed in Escherichia coli for the first time. After a series steps of ion‐exchange and gel‐filtration chromatographic purification, the recombinant h‐Fuc with 95% homogeneity was obtained. The molecular weight of the enzyme was analyzed by SDS‐PAGE (~50 kDa) and confirmed by ESI mass (50895 Da). The recombinant h‐Fuc was stable up to 55 °C with incubation at pH 6.8 for 2 h; the optimum temperature for h‐Fuc is approximately 55 °C. The enzyme was stable at pH 2.5–7.0 for 2 h; the enzyme activity decreased greatly for pH greater than 8.0 or less than 2.0. The Km and kcat values of the recombinant h‐Fuc (at pH 6.8) were determined to be 0.28 mM and 17.1 s?1, respectively. The study of pH‐dependent activity showed that the recombinant enzyme exhibited optimum activity at two regions near at pH 4.5 and pH 6.5. These features of the recombinant h‐Fuc are comparable to the native enzyme purified directly from human liver. Studies on the transfucosylation and common intermediate of the enzymatic reaction by NMR support that h‐Fuc functions as a retaining enzyme catalyzing the hydrolysis of substrate via a two‐step, double displacement mechanism.  相似文献   

19.
A novel amphoteric poly(amino acid) is synthesized by grafting a cationic amino acid (L ‐Arg) to γ‐PGA to prepare charged NPs. γ‐PGA‐Arg NPs can be prepared by the self‐complexation of a single polymer by intra‐/inter‐molecular electrostatic interactions when the polymer is dispersed in water. The size and surface charge of the NPs can be regulated by the grafting degree of Arg (41, 56, and 83%). The smallest NPs are obtained at 56% grafting degree of the γ‐PGA‐Arg copolymer. The 56 and 83% grafting degree NPs are stable for at least 1 week. Depending on their surface charge, these NPs can selectively adsorb anionically or cationically charged proteins.

  相似文献   


20.
The fabrication of stable polyelectrolyte/Au nanoparticle multilayer films was achieved by the UV irradiation of layer‐by‐layer self‐assembled multilayers consisting of diazoresins and Au nanoparticles. The method promises to be a simple and efficient strategy to construct covalently attached organic/inorganic multilayer hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号