首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethanol can be used as a platform molecule for synthesizing valuable chemicals and fuel precursors. Direct synthesis of C5+ ketones, building blocks for lubricants and hydrocarbon fuels, from ethanol was achieved over a stable Pd-promoted ZnO-ZrO2 catalyst. The sequence of reaction steps involved in the C5+ ketone formation from ethanol was determined. The key reaction steps were found to be the in situ generation of the acetone intermediate and the cross-aldol condensation between the reaction intermediates acetaldehyde and acetone. The formation of a Pd–Zn alloy in situ was identified to be the critical factor in maintaining high yield to the C5+ ketones and the stability of the catalyst. A yield of >70 % to C5+ ketones was achieved over a 0.1 % Pd-ZnO-ZrO2 mixed oxide catalyst, and the catalyst was demonstrated to be stable beyond 2000 hours on stream without any catalyst deactivation.  相似文献   

2.
The low‐temperature ethanol steam reforming (ESR) reaction mechanism over a supported Rh/Pt catalyst has been investigated using isotope‐labeled EtOH and H2O. Through strategic isotope labeling, all nonhydrogen atoms were distinct from one another, and allowed an unprecedented level of understanding of the dominant reaction pathways. All combinations of isotope‐ and non‐isotope‐labeled atoms were detected in the products, thus there are multiple pathways involved in H2, CO, CO2, CH4, C2H4, and C2H6 product formation. Both the recombination of C species on the surface of the catalyst and preservation of the C?C bond within ethanol are responsible for C2 product formation. Ethylene is not detected until conversion drops below 100 % at t=1.25 h. Also, quantitatively, 57 % of the observed ethylene is formed directly through ethanol dehydration. Finally there is clear evidence to show that oxygen in the SiO2‐ZrO2 support constitutes 10 % of the CO formed during the reaction.  相似文献   

3.
The results of a study on the activity and operational stability of an Au–Pd/MFI/Al2O3 catalyst in the reaction of ethanol conversion into a gasoline fraction of hydrocarbons are reported. In the presence of the Au–Pd/MFI/Al2O3 catalyst, ethanol was almost completely converted into an alkane–aromatic fraction of C3–C11 hydrocarbons at 300°C in an atmosphere of Ar; the yield of this fraction was as high as 90% on a feed carbon basis. It was established that, in the presence of the bimetallic Au–Pd catalyst, the yield of the target fraction increased by 10%, as compared with that on a monometallic Au-containing sample. The Au–Pd/MFI/Al2O3 catalyst exhibited much higher stability in a long-term experiment in comparison with the previously tested pilot sample of Pd–Zn/MFI/Al2O3. After a 40-h operation, the yield of the target fraction of C3+ hydrocarbons in the presence of the Au–Pd/MFI/Al2O3 catalyst decreased by 15%. The treatment of the catalyst with hydrogen led to the complete restoration of its activity. The structure of the Au–Pd active constituents was studied by transmission electron microscopy X-ray photoelectron spectroscopy. methods of the and microscopy.  相似文献   

4.
An efficient approach for the synthesis of 10 novel pyrazole‐based 1,2,4‐triazolidin‐3‐one derivatives catalyzed by ZnO‐loaded ZrO2 as heterogeneous catalyst with ethanol as solvent is described. The structure of the mixed metal oxide catalyst was characterized by various instrumental techniques (scanning electron microscopy, transmission electron microscopy, X‐ray diffraction and Brunauer–Emmett–Teller). In smooth reactions, products were accomplished in excellent yields (90–94%) with short reaction times (≈ 45 min). ZnO/ZrO2 catalyst exhibited good recyclability. The catalyst is reused six times without any noticeable loss of activity. The major advantages of this method are operational simplicity, mild conditions, simple work‐up procedure and broad functional group tolerance.  相似文献   

5.
A novel Ru‐Fe‐B/ZrO2 catalyst for the selective hydrogenation of benzene to cyclohexene was prepared by the chemical reduction method. A yield of cyclohexene of 57.3% was achieved at benzene conversion of 80.6% on this catalyst. The activity and yield of cyclohexene were higher than those studied previously. The structural characterizations of the catalyst were performed by TEM‐SAED, XRD, and N2‐physisorption. Moreover, cyclohexene selectivities on this catalyst increased and the activities decreased with the increase of the ZnO dosages, however, the activities increased and cyclohexene selectivities decreased with the increase of the H2SO4 dosages. Different feeding manners of H2SO4 or ZnO exerted definitely influence on the performances of this catalyst, but the degrees of influence were different due to the character of chemisorptions. Furthermore, the activity and cyclohexene selectivity on the catalysts could be reversibly modified by adding H2SO4 or ZnO into reaction slurry, which provides an easy method to recover the activity and selectivity of Ru‐Fe‐B/ZrO2 catalysts during the process of producing cyclohexene. And the modifiable mechanisms involved were speculated.  相似文献   

6.
Metal–organic frameworks (MOFs) have recently been identified as versatile sacrificing templates to construct functional nanomaterials for heterogeneous catalysis. Herein, we report a thermal transformation strategy to directly fabricate metal Pd nanoclusters inlaid within a ZrO2@nitrogen‐doped porous carbon (Pd/ZrO2@CN) composite using Pd@NH2‐UiO‐66(Zr) as a precursor that was pre‐synthesized by a one‐pot hydrothermal method. The developed Pd/ZrO2@CN as a robust catalyst delivered remarkable stability and activity to the catalytic hydrogenation of 2,3,5‐trimethylbenzoquinone (TMBQ) to 2,3,5‐trimethylhydroquinone (TMHQ), a key reaction involved in vitamin E production. The hydrogenation was carried out at 110 °C with 1.0 MPa H2, and it resulted in 98% TMHQ yield as the sole product over five consecutive cycles, outperforming the analogue Pd/ZrO2@C without nitrogen doping templated from Pd@UiO‐66(Zr). The excellent catalytic properties of Pd/ZrO2@CN likely originated from the highly stable ultrafine Pd nanoclusters inlaid within ZrO2@CN matrix on account of the strong interaction between N and Pd, as well as on the Lewis acidity of ZrO2, which was beneficial to the hydrogenation.  相似文献   

7.
We report the complete ethanolysis of Kraft lignin over an α‐MoC1?x/AC catalyst in pure ethanol at 280 °C to give high‐value chemicals of low molecular weight with a maximum overall yield of the 25 most abundant liquid products (LP25) of 1.64 g per gram of lignin. The LP25 products consisted of C6–C10 esters, alcohols, arenes, phenols, and benzyl alcohols with an overall heating value of 36.5 MJ kg?1. C6 alcohols and C8 esters predominated and accounted for 82 wt % of the LP25 products. No oligomers or char were formed in the process. With our catalyst, ethanol is the only effective solvent for the reaction. Supercritical ethanol on its own degrades Kraft lignin into a mixture of small molecules and molecular fragments of intermediate size with molecular weights in the range 700–1400, differing in steps of 58 units, which is the weight of the branched‐chain linkage C3H6O in lignin. Hydrogen was found to have a negative effect on the formation of the low‐molecular‐weight products.  相似文献   

8.
Oxidation of metallic Pd(0) particles applied onto an oxide support with Fe(III) ions in a concentration not exceeding 0.06 M at 70°C was studied. In contrast to palladium black, with the supported catalyst Pd/ZrO2 Pd(II) is formed in the solution in the concentration corresponding to the thermodynamic equilibrium. With an increase in the initial Fe(III) concentration, the equilibrium yield of Pd(II) increases. The initial reaction rate grows with an increase in the weight of the initial Pd-containing catalyst and in the initial Fe(III) concentration. The revealed kinetic relationships of the dissolution of Pd(0) in the reaction with Fe(III) aqua ions allow a conclusion that, in oxidation of lower olefins C2-C4 in the catalytic system Fe(III)_Pd/ZrO2 in aqueous solution, Pd(II) is regenerated in the catalytic cycle by oxidation of Pd(I) species, rather than of Pd(0), with Fe(III) aqua ions.  相似文献   

9.
A catalyst generated in situ from PdCl2 (1 mole) and p-CH3C6H4SO2-Na·4H2O (5 mole) promotes the dimerization of butadiene with the incorporation of α-acylamino ketones (1a~1h) to provide α-acylamino α-(2,7-octadienyl) ketones (2a~2h) in good yields. This new type of C-C bond forming reaction is not effected by the catalyst of Pd(PPh3)4 except for one example (with 1e).  相似文献   

10.
Electrochemical reduction of carbon dioxide, if powered by renewable electricity, could serve as a sustainable technology for carbon recycling and energy storage. Among all the products, ethanol is an attractive liquid fuel. However, the maximum faradaic efficiency of ethanol is only ≈10 % on polycrystalline Cu. Here, CuZn bimetallic catalysts were synthesized by in situ electrochemical reduction of ZnO‐shell/CuO‐core bi‐metal‐oxide. Dynamic evolution of catalyst was revealed by STEM‐EDS mapping, showing the migration of Zn atom and blending between Cu and Zn. CuZn bimetallic catalysts showed preference towards ethanol formation, with the ratio of ethanol/ethylene increasing over five times regardless of applied potential. We achieved 41 % faradaic efficiency for C2+ liquids with this catalyst. Transitioning from H‐cell to an electrochemical flow cell, we achieved 48.6 % faradaic efficiency and ?97 mA cm?2 partial current density for C2+ liquids at only ?0.68 V versus reversible hydrogen electrode in 1 m KOH. Operando Raman spectroscopy showed that CO binding on Cu sites was modified by Zn. Free CO and adsorbed *CH3 are believed to combine and form *COCH3 intermediate, which is exclusively reduced to ethanol.  相似文献   

11.
The hydrogenation of 1,3-pentadiene into pentenes over the commercial 0.5% Pd/Al2O3 catalyst and over a new catalyst containing 1.0% Pd and 3.7% Ag (μ-catalyst) has been investigated. The new catalyst has been prepared via the flameless wave conversion of cyclotrimethylenetrinitramine in a porous composite. The catalytic properties of the new composite in the hydrogenation reaction depend on the hydrogen/1,3-pentadiene ratio and on the catalyst activation temperature. The reaction conditions for selective 1,3-pentadiene hydrogenation have been optimized. The pentenes yield as a function of temperature passes through a maximum at any H2/C5H8 ratio between 1 and 2. The 2-pentene/1-pentene ratio in the reaction products increases as the temperature is raised.  相似文献   

12.
As alternatives to the common tertiary phosphine/Pd systems, well‐defined N‐heterocyclic carbene–Pd complexes have been proven to be highly efficient precatalysts for intermolecular direct annalution of o‐haloanilines and ketones at lower catalyst loadings. A highly efficient and practical protocol for synthesis of functionalized indoles was developed using (IPr)Pd(acac)Cl as catalyst. Both o‐bromoanilines and o‐chloroanilines gave rise to efficient coupling under the reaction conditions. Related to acyclic ones, cyclic ketones coupled more effectively with o‐haloanilines. With [Pd(IPr)2] as catalyst, the base‐sensitive groups including OH and CO2H groups could be tolerated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Phostungstic acid (PWA) nanoclusters grafted onto high surface area polycrystalline hydrous zirconia powder (PWA/ZrO2) was prepared by wet impregnation method. The zirconia particles were synthesized using a modified sol–gel route. The obtained material was characterized by X-ray diffraction (XRD), UV–Vis–diffuse reflectance spectroscopy (UV–Vis–NIR–DRS), infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and sorptometric techniques. XRD study revealed the presence of tetragonal phase of zirconia in the synthesized sample. TEM study indicates presence of small PWA clusters with size in the range of 5–15 nm well dispersed on the surface of the ZrO2 particles. The characteristic UV and IR absorption feature of the PWA was retained in the PWA/ZrO2 material. The PWA/ZrO2 material was used as an efficient catalyst for the preparation of octahydroquinazolinones and β-acetamido ketones. The octahydroquinazolinones were synthesized by the multicomponent condensation of dimedones, urea and aryl aldehydes in ethanol. Similarly, β-acetamido ketones were synthesized with high yield and purity by four component condensation of aryl aldehydes, enolizable ketones, and acetyl chlorides in acetonitrile. The protocols developed in this investigation using the PWA/ZrO2 catalyst is advantageous in terms of simple experimentation, high yield and purity of the products and recovery and reutilization of the heterogeneous catalyst.  相似文献   

14.
Three recurring hypotheses are often used to explain the effect of non‐thermal plasmas (NTPs) on NTP catalytic hybrid reactions; namely, modification or heating of the catalyst or creation of new reaction pathways by plasma‐produced species. NTP‐assisted methane (CH4) oxidation over Pd/Al2O3 was investigated by direct monitoring of the X‐ray absorption fine structure of the catalyst, coupled with end‐of‐pipe mass spectrometry. This in situ study revealed that the catalyst did not undergo any significant structural changes under NTP conditions. However, the NTP did lead to an increase in the temperature of the Pd nanoparticles; although this temperature rise was insufficient to activate the thermal CH4 oxidation reaction. The contribution of a lower activation barrier alternative reaction pathway involving the formation of CH3(g) from electron impact reactions is proposed.  相似文献   

15.
Further study of our aerobic intermolecular cyclization of acrylic acid with 1‐octene to afford α‐methylene‐γ‐butyrolactones, catalyzed by the Pd(OCOCF3)2/Cu(OAc)2 ? H2O system, has clarified that the accumulation of water generated from oxygen during the reaction causes deactivation of the Cu cocatalyst. This prevents regeneration of the active Pd catalyst and, thus, has a harmful influence on the progress of the cyclization. As a result, both the substrate conversion and product yield are efficiently improved by continuous removal of water from the reaction mixture. Detailed analysis of the kinetic and spectroscopic measurements performed under the condition of continuous water removal demonstrates that the cyclization proceeds in four steps: 1) equilibrium coordination of 1‐octene to the Pd acrylate species, 2) Markovnikov‐type acryloxy palladation of 1‐octene (1,2‐addition), 3) intramolecular carbopalladation, and 4) β‐hydride elimination. Byproduct 2‐acryloxy‐1‐octene is formed by β‐hydride elimination after step 2). These cyclization steps fit the Michaelis–Menten equation well and β‐hydride elimination is considered to be a rate‐limiting step in the formation of the products. Spectroscopic data agree sufficiently with the existence of the intermediates bearing acrylate (Pd? O bond), η3‐C8H15 (Pd? C bond), or C11H19O2 (Pd? C bond) moieties on the Pd center as the resting‐state compounds. Furthermore, not only CuII, but also CuI, species are observed during the reaction time of 2–8 h when the reaction proceeds efficiently. This result suggests that the CuII species is partially reduced to the CuI species when the active Pd catalytic species are regenerated.  相似文献   

16.
CeO2‐promoted Na‐Mn‐W/SiO2 catalyst has been studied for catalytic oxidation of methane in a micro‐stainless‐steel reactor at elevated pressure. The effect of operating conditions, such as GHSV, pressure and CH4/O2 ratio, has been investigated. 22.0% CH4 conversion with 73.8% C2‐C4 selectivity (C2/C3/C4 = 3.8/1.0/3.6) was obtained at 1003 K, 1.5 × 105 h?;1 GHSV and 1.0 MPa. The results show: Elevated pressure disadvantages the catalytic oxidation of methane to C2‐C4 hydrocarbons. Large amounts of C3 and C4 hydrocarbons are observed. The unfavorable effects of elevated pressure can be overcome by increasing GHSV; the reaction is strongly dependent on the operating conditions at elevated pressure, particularly dependent on GHSV and ratio of CH4/O2. Analyses by means of XRD, XPS and CO2‐TPD show that CO2 produced from the reaction makes a weakly poisoning capacity of the catalyst; information of changeful valence on Ce and Mn was detected over the near‐surface of the Ce‐Na‐W‐Mn/SiO2 catalyst; the existence of Ce3+/Ce4+ and Mn2+/Mn3+ ion couple supported that the reaction over the catalyst followed the Redeal‐Redox mechanism. Oxidative re‐coupling of C2H6 and CH4 in gas phase or over surface of catalyst produces C3 or C4 hydrocarbons.  相似文献   

17.
Nanoscale iron‐doped zirconia solid‐solution aerogels are prepared via a simple ethanol thermal route using zirconyl nitrate and iron nitrate as starting materials, followed by a supercritical fluid drying process. Structural characteristics are investigated by means of powder X‐ray diffraction (XRD), thermal analyses (TG/DTA), N2 adsorption measurements and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The results show that the resulting iron‐doped solid solutions are metastable tetragonal zirconia which exhibit excellent dispersibility and high solubility of iron oxide. Further, when the Fe:(Fe+Zr) ratio x is lower than 0.10, all of the Fe3+ ions can be incorporated into ZrO2 by substituting Zr4+ to form Zr1?xFexOy solid solutions. Moreover, for the first time, an additional hydroxyl group band that is not present in pure ZrO2 is observed by DRIFTS for the Zr(Fe)O2 solid solution. This is direct evidence of Fe3+ ions incorporated into ZrO2. These Zr1?xFexOy solid solutions are excellent catalysts for the solvent‐free aerobic oxidation of n‐hexadecane using air as the oxidant under ambient conditions. The Zr0.8Fe0.2Oy solid‐solution catalyst demonstrates the best catalytic properties, with the conversion of n‐hexadecane reaching 36.2 % with 48 % selectivity for ketones and 24 % selectivity for alcohols and it can be recycled five times without significant loss of activity.  相似文献   

18.
Heterogeneous ReOx–Pd/CeO2 catalyst showed excellent performance for simultaneous hydrodeoxygenation of vicinal OH groups. High yield (>99 %), turnover frequency (300 h?1), and turnover number (10 000) are achieved in the reaction of 1,4‐anhydroerythritol to tetrahydrofuran. This catalyst can be applied to sugar alcohols, and mono‐alcohols and diols are obtained in high yields (≥85 %) from substrates with even and odd numbers of OH groups, respectively. The high catalytic performance of ReOx–Pd/CeO2 can be assigned to rhenium species with +4 or +5 valence state, and the formation of this species is promoted by H2/Pd and the ceria support.  相似文献   

19.
The mechanism of the catalytic reduction of palmitic acid to n‐pentadecane at 260 °C in the presence of hydrogen over catalysts combining multiple functions has been explored. The reaction involves rate‐determining reduction of the carboxylic group of palmitic acid to give hexadecanal, which is catalyzed either solely by Ni or synergistically by Ni and the ZrO2 support. The latter route involves adsorption of the carboxylic acid group at an oxygen vacancy of ZrO2 and abstraction of the α‐H with elimination of O to produce the ketene, which is in turn hydrogenated to the aldehyde over Ni sites. The aldehyde is subsequently decarbonylated to n‐pentadecane on Ni. The rate of deoxygenation of palmitic acid is higher on Ni/ZrO2 than that on Ni/SiO2 or Ni/Al2O3, but is slower than that on H‐zeolite‐supported Ni. As the partial pressure of H2 is decreased, the overall deoxygenation rate decreases. In the absence of H2, ketonization catalyzed by ZrO2 is the dominant reaction. Pd/C favors direct decarboxylation (?CO2), while Pt/C and Raney Ni catalyze the direct decarbonylation pathway (?CO). The rate of deoxygenation of palmitic acid (in units of mmol moltotal metal?1 h?1) decreases in the sequence r(Pt black)r(Pd black)>r(Raney Ni) in the absence of H2. In situ IR spectroscopy unequivocally shows the presence of adsorbed ketene (C?C?O) on the surface of ZrO2 during the reaction with palmitic acid at 260 °C in the presence or absence of H2.  相似文献   

20.
Summary Oxidation of propene to acetone in water solutions in the presence of homogeneous catalysts (Pd2+ + HPA-x, where HPA-x = H3+xPVxMo12-xO40, x = 1-4) is studied. This reaction is shown to be of the 1st order with respect to C3H6 and of the 0.5th order with respect to Pd. The reaction rate does not depend on the concentration of HPA-x and acidity of the catalyst solution. The apparent activation energy of the reaction is 21 kJ/mol. A reaction mechanism is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号